本研究项目研究了四方面的内容1)向量值函数的积分,这克服了传统积分理论在算子代数表示论中所不能解决的按拓扑收敛问题并突破了传统可测理论的应用限制,它简化了传统积分理论的繁琐程式但却保留了传统积分理论的良好性质,还有一些新特色2)广群算子代数的闭子模的刚性,这解除了对广群有丰富紧开不变子集的要求3)多变数解析Hilbert模理论,基于多复变代数几何建立的解析Hilbert模的特征空间的理论目前已成为Hilbert模研究的基本工具,还用平均对偶方法解决了高维区域Hardy模上同调群受到国际同行极高评价4)多变数的Toeplitz理论,这些工作用符号的映射度刻划了拟正则区域上广义多重Toeplitz算子的指标。在二维情形,这与Poincare猜测有密切关系。
{{i.achievement_title}}
数据更新时间:2023-05-31
向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选
基于旋量理论的数控机床几何误差分离与补偿方法研究
现代优化理论与应用
多元化企业IT协同的维度及测量
褐煤与煤矸石在循环流化床锅炉中混燃及SO2、NOx排放特性研究
代数的循环上同调
结合共形代数的循环上同调理论
函数空间上Toeplitz算子及斜Toeplitz算子的代数性质
函数空间上的Toeplitz算子的代数性质