More than 70% of the energy consumption of the iron & steel industry, which is basic industry ofthe national economy, comes from ironmaking process. Increasing PCI rate of blast furnace is an important measure which can make iron & steel industry more efficient, energy saving and green. Combustion zone temperature field of blast furnace and working uniformity of hearth is one of determining factors of increasing PCI rate and blast furnace smooth running. Along the circumference direction of BF hearth has about 20 to 30 combustion zone. Burning in combustion zone,in which theoretical combustion temperature is higher than 2000℃, is mainly incomplete gas-solid burning of coke and pulverized coal particles in limited volume, accompanied with dripping of liquid iron and slag. On the basis of proposing the concept of finite angle incomplete data temperature field rebuilding of combustion zone, this project will build "non-inverse problem" of gas phase, coke particle phase, pulverized coal particle phase, flow, heat and mass transfer, and combustion of liquid iron and slag drops and simulate. In this process, extract influential parameters and relationship of combustion zone temperature field, and combining with the research on radiation characteristics of combustion products and experts inspired experience, solve the mathematical model (inverse problem) of combustion zone temperature field rebuilding optimally in global and local. Develop evaluation system of combustion zone temperature field rebuilding and working uniformity of hearth. This project involves multi-disciplinary knowledge such as metallurgy, heterogeneous chemical reaction fluid mechanics, heat transfer theory, combustion science, computing science, optical imaging, information science, and image processing.
钢铁工业是国民经济基础工业,炼铁耗能占其70%以上。提高高炉喷煤量是其高效、节能、环保及绿色的重要举措。高炉燃烧带温度场及炉缸工作均匀性是提高喷煤量及保障高炉顺行的决定性因素之一。一座高炉炉缸沿周向有20到30个左右燃烧带。燃烧带燃烧主要是焦炭与煤粉颗粒在有限体积内不完全气固燃烧,并伴有渣铁滴落,理论燃烧温度高达2000度以上。本项目在提出燃烧带有限角不完全数据温度场重建概念的基础上,建立燃烧带气相、焦炭颗粒相、煤粉颗粒相、渣及铁滴流动、传热、传质、燃烧及辐射传热"正问题"数学模型,进行数值模拟,提取影响燃烧带温度场主要参数及关系,结合燃烧带产物辐射特性研究及专家启发经验对燃烧带温度场重建(反问题)数学模型进行全局与局部寻优求解。开发高炉燃烧带温度场重建及炉缸工作均匀性评价系统。本项目涉及冶金学、多相化学反应流体力学、传热学、燃烧学、计算科学、光学成像、信息科学及图像处理等多学科知识。
(1)项目研究内容如期完成,达到了预期目标。发表SCI检索文章7篇,EI检索文章6篇,中文核心4篇。批准软件著作权两项,受理发明专利两项;.(2)根据已建立风口回旋区的流场、温度场、浓度场、燃烧、辐射传热及理论燃烧温度模型,数值仿真表明回旋区温度为2000 ℃左右。为了使检测系统更加准确地反应高炉回旋区的实际结果,黑体炉标定温度应尽量接近高炉回旋区温度,高炉燃烧带检测系统的黑体炉标定温度范围为1500 ℃到2000 ℃;.(3)根据回旋区内气固相互作用机理,建立了高炉回旋区大小数学模型,模型计算得到了高炉操作过程中回旋区存在迟滞现象,该现象对设计高炉燃烧带检测的软硬件系统及炉缸工作均匀性评价体系有重要的指导意义;.(4)大型高炉炉缸燃烧带包括几十个回旋区,拍摄得到了海量数据,采用偏最小二乘法优化了燃烧带温度场计算模型,提高了检测精度;.(5)采用蒙特卡洛法模拟了高炉回旋区辐射传热,建立了回旋区温度场反问题数学模型,并结合实测数据计算了回旋区三维温度场;.(6)开发了高炉燃烧带检测的软硬件原型系统及炉缸工作均匀性评价体系;.(7)当操作工艺参数稳定时,通常认为燃烧带的温度不随着时间和空间发生变化,实测发现高炉燃烧带的温度场分布随时间及空间的变化而变化;.(8)通过对采集得到的高炉燃烧带图像进行特征分析及边缘提取,发现高炉燃烧带图像中存在颗粒,研究表明回旋区内颗粒的粒径分布为7.13 mm到60 mm,以上发现为优化高炉工艺参数提供了重要的依据;.(9)中国高炉在逐渐大型化,高炉容积最大已达5800 立方米,炉缸直径已达15 米以上,风口回旋区的个数已由十几个增加到四十几个,炉缸工作均匀性对大型高炉操作变得至关重要。截至目前还没有能够有效评价高炉炉缸工作均匀性体系,本项目建立的高炉燃烧带检测系统及炉缸工作均匀性评价体系对认识回旋区形成及燃烧机理具有潜在的学术价值,对高炉稳定及高效生产有巨大的应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
拥堵路网交通流均衡分配模型
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
高炉炉墙和炉缸炉底侵蚀内型的图象重建
多尺度焦炭在高炉炉缸溶解及劣化基础研究
高炉炉缸保护层多元体系的形成与演变
高炉炉缸渣铁焦物相界面及渣铁穿焦行为研究