Transition metal phosphides are widely applied in the field of energy and catalysis because of its excellent electrochemcial properties, and its application research in the field of electrochemical sensing is just starting to take off. How to improve the electrochemical response signal, the relationship between the structure and composition of transition metal phosphides and the electrochemical sensing property is not reported until now and lack of systemic research. This project intends to use the synthesis route of ZIF-MOFs to prepare the single metal-based MOFs, muitiple metal-based MOFs, MOFs hybrids precursors, then transition metal phosphides with high adsorption capacity, specific surface, catalytical activity can be obtained using these MOFs hybrids as the precursors combing pyrolysis and phase conversion technology. After that, the electrochemical sensing properties of transition metal phosphides with different structure and ingredient were studied in detail to investigate the intrinsic relationship between structure and activity. The electrochemical reaction mechanism and signal enhancement mechanism of the highly poisonous and extensively existed environmental hormones, phenolic environmental pollutants and so on were studied on the surface of transition metal phosphides, the interface physic and electrochemical scientific questions for the remarkable signals enhancement effects of transition metal phosphides were resolved, and new electrochemical sensing system and method were developed for the detection of environmental pollutants such as hormones, phenols and so on with high selectivity and sensitivity, the connotation of nano electrochemical sensing was enriched, which was helpful to develop broader ultrasensitive electrochemical sensing systems.
过渡金属磷化物由于卓越的电化学特性已在能源、催化等领域取得了广泛的应用,而在电化学传感领域的应用刚刚起步。过渡金属磷化物如何提高电化学响应信号,其结构和组成如何影响其电化学传感特性还未见相关报道,缺乏系统性研究。本项目拟采用沸石咪唑类MOFs衍生策略,设计制备出单金属MOFs、多金属MOFs、MOFs复合物等前驱体,随后经热解、相转换制备出具有高吸附能力、高比表面、高电催化活性过渡金属磷化物。系统研究不同结构和组成的过渡金属磷化物的电化学传感特性,阐述纳米构效关系,研究高毒性、广泛存在的环境激素、酚类等环境污染物在过渡金属磷化物表面的电化学反应机理和信号增强机制,解决过渡金属磷化物显著改善其电化学传感性能的界面物理和电化学科学问题,探索高选择性、高灵敏的激素类、酚类等环境污染物的纳米电化学检测新体系和新方法,丰富纳米电化学传感内涵,有利于构建更广泛的超灵敏电化学传感体系。
课题围绕沸石咪唑类MOFs及其衍生材料的结构设计、电化学活性调控、催化增敏机理以及传感应用开展了系列研究工作,获得了多种基于沸石咪唑类MOFs及其衍生材料的高选择性、高灵敏度传感界面,探究了靶标分析物在功能界面的信号增敏机制,建立了多种环境激素、酚类污染物、药物分子、生物小分子的检测新方法;在Analytical Chemistry、Small、Carbon、ACS Applied Materials & Interfaces、Sensors & Actuators: B. Chemical、Analytica Chimica Acta、Applied Surface Science等SCI期刊上发表SCI通讯作者论文15篇,他引257次,圆满完成了课题研究任务。主要成果如下:(1)通过改善沸石咪唑类MOFs电子转移能力,调控其电化学传感特性。通过吸附/自组装、离子交换/化学还原等策略,将高导电性的石墨烯纳米片(GN)、碳纳米管(CNTs)和高电催化活性的纳米金(Au)颗粒与ZIF-67、ZIF-8原位整合,获得了高性能的ZIF-67/GN、Ni-MOF/CNTs、Au@AuZn-MOF等复合物,实现了血糖、双酚A、雌酚酮等分子的高灵敏电化学分析;(2)通过MOFs高温热解碳化策略,在MOFs衍生碳材料中引入异质原子,调控其电化学传感特性。以ZIF-67、ZIF-8等为前驱体,采用物理吸附、化学刻蚀等策略,将异质P原子引入到ZIF-67、ZIF-8衍生碳基材料中,获得了N, P共掺杂的多孔碳、核壳型异质多孔碳等碳材料,显著提高了靶标分子的响应信号,构建了萘酚异构体、对乙酰氨基酚、邻苯二酚、对苯二酚等新型电化学传感平台;(3)借助硬模板,改善碳基材料的孔隙率,增强其电化学传感特性。以NaCl晶体为硬模板,聚乙烯吡咯烷酮、氧化石墨烯等为碳源,构建了Ni, N共掺杂的三维异质多孔碳材料(3D Ni-N-C)、碳包覆镍纳米颗粒修饰的石墨烯复合物(Ni@C@rGO),实现了葡萄糖分子的高选择性、高灵敏度检测;(4)通过MOFs衍生策略,将沸石咪唑类MOFs及其复合物硫化、磷化、氧化,获得了具有高电催化活性的氧化物、硫化物及磷化物,实现了硝基酚、农药分子等环境污染物的信号增敏效应。本项目所研制的传感器均用于实际样品测试,相对误差低于10%;与目前已报道的传感器相比,表现出更高的
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
类沸石型杂化金属咪唑框架材料的结构设计与性能研究
沸石咪唑型MOFs/贵金属纳米粒子复合物的结构调控及对食品有害物的响应机制
断键型类沸石硼咪唑框架材料的结构设计与性能研究
过渡金属磷化物催化剂的制备及加氢性能研究