正倒向随机微分方程及相关的优化问题

基本信息
批准号:11871310
项目类别:面上项目
资助金额:53.00
负责人:于志勇
学科分类:
依托单位:山东大学
批准年份:2018
结题年份:2022
起止时间:2019-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:解兵,王法磊,穆蕊,彭滢,杜凯,田然
关键词:
线性二次理论HJB方程最大值原理正倒向随机微分方程概率解释
结项摘要

In this project, the core of our research is the coupled forward-backward stochastic differential equations (FBSDEs for short). We shall study the following problems systematically and deeply. (1) We shall improve the Lp (p is bigger than or equal to 2) theory for the coupled FBSDEs. Then, in the sense of classical solutions and weak solutions, we shall investigate the probabilistic interpretation for a kind of second order quasilinear partial differential equations. (2) By delicately using the Lp theory of the coupled FBSDEs, we study the stochastic optimal control problems and the stochastic differential game problems, in which the recursive indices are coupled with the states. We shall generalize the dynamic programing principle and the theory of viscosity solution for the related Hamilton-Jacobi-Bellman equation, and establish a general maximum principle. (3) By clearly analyzing the coupled structure of FBSDEs, we propose a kind of linear-quadratic generalized stochastic Stackelberg games. Moreover, for the Stackelberg equilibrium, we shall study the existence, the uniqueness, the open-loop form and the close-loop form. (4) Finally, the theoretical results will be applied to several problems arising from the field of mathematical finance, such as the investment optimization problems and the asset pricing problems.

本课题以耦合的正倒向随机微分方程为核心,系统深入地研究下面问题:(1)改进耦合的正倒向随机微分方程的Lp(p大于等于2)理论,在经典解和弱解意义下,全面深入地研究一类二阶拟线性偏微分方程的概率解释;(2)精细地使用耦合的正倒向随机微分方程的Lp理论,研究递归型的指标和状态耦合的随机最优控制和随机微分博弈问题,包括推广动态规划原理和相关的Hamilton-Jacobi-Bellman方程粘性解理论,建立一般最大值原理;(3)清晰地分析正倒向随机微分方程的耦合结构,提出线性二次广义随机Stackelberg博弈,并研究Stackelberg均衡的存在性、唯一性、开环和闭环表达;(4)将理论结果应用于若干金融数学领域的投资优化和资产定价问题。

项目摘要

本课题研究了以耦合的正倒向随机微分方程为核心的随机最优控制和随机微分博弈理论及相关问题。主要包括:改进了耦合的正倒向随机微分方程的Lp(p≥2)理论,得到小区间上的Lp结果;发展了正倒向随机微分方程的自生长、自相似的“控制—单调结构”,拓宽了广义 Stackelberg 随机微分博弈的研究领域;研究了有关均值场、无穷时区、时间延迟、随机跳跃等数学模型下的线性二次最优控制和零和微分博弈问题;研究了非线性期望框架下的倒向随机微分方程理论;发展了随机系统的能控性的研究。除此之外,我们解决了若干金融数学领域的投资优化问题,推动随机控制与博弈、随机分析、金融数学等学科领域的发展。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法

多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法

DOI:10.13334/j.0258-8013.pcsee.190276
发表时间:2020
2

带有滑动摩擦摆支座的500 kV变压器地震响应

带有滑动摩擦摆支座的500 kV变压器地震响应

DOI:10.13336/j.1003-6520.hve.20200528028
发表时间:2021
3

基于旋量理论的数控机床几何误差分离与补偿方法研究

基于旋量理论的数控机床几何误差分离与补偿方法研究

DOI:
发表时间:2019
4

基于腔内级联变频的0.63μm波段多波长激光器

基于腔内级联变频的0.63μm波段多波长激光器

DOI:10.3788/CJL201946.0801003
发表时间:2019
5

具有随机多跳时变时延的多航天器协同编队姿态一致性

具有随机多跳时变时延的多航天器协同编队姿态一致性

DOI:10.7641/CTA.2018.70969
发表时间:2018

于志勇的其他基金

批准号:11101242
批准年份:2011
资助金额:23.00
项目类别:青年科学基金项目
批准号:11026185
批准年份:2010
资助金额:3.00
项目类别:数学天元基金项目

相似国自然基金

1

正倒向系统相关的偏微分方程与随机控制问题

批准号:11201268
批准年份:2012
负责人:张峰
学科分类:A0210
资助金额:22.00
项目类别:青年科学基金项目
2

多值倒向随机微分方程及相关控制问题研究

批准号:11201004
批准年份:2012
负责人:胡兰英
学科分类:A0210
资助金额:22.00
项目类别:青年科学基金项目
3

G-倒向随机微分方程相关问题研究

批准号:11761028
批准年份:2017
负责人:张德飞
学科分类:A0210
资助金额:36.50
项目类别:地区科学基金项目
4

正倒向随机微分方程理论及其应用

批准号:10001022
批准年份:2000
负责人:吴臻
学科分类:A0210
资助金额:6.50
项目类别:青年科学基金项目