随机二阶锥互补问题理论与算法研究及其应用

基本信息
批准号:11501275
项目类别:青年科学基金项目
资助金额:18.00
负责人:罗美菊
学科分类:
依托单位:辽宁大学
批准年份:2015
结题年份:2018
起止时间:2016-01-01 - 2018-12-31
项目状态: 已结题
项目参与者:张久军,郭凤艳,刘红玲,张志飞,王亚燚,李亚杰
关键词:
样本均值近似二阶锥互补函数随机二阶锥互补问题鲁棒随机纳什均衡收敛性
结项摘要

As an important branch of mathematical programming, second-order cone programming has an important and wide-ranging application prospect. Since the KKT conditions of second-order cone programming can be converted into the second-order cone complementarity problems (SOCCP), compared with second-order cone programming, SOCCP is a wide equilibrium optimization problem. As the diversification of practical problems, stochastic factors are usually involved, and a wrong decision will be made if disregarding these factors. This proposal will focus on stochastic second-order cone complementarity problems (SSOCCP) that has a wider application field. Firstly, an expected value model, an expected residual minimization model, a condition value-at-risk model and their sample average approximation problems will be presented for solving SSOCCP. Algorithms, convergence analysis and optimization theory will be considered respectively. Secondly, if the distribution of the stochastic variables can't be obtained, we will present approximation distribution robust optimization problems for the above three models respectively by constructing approximation distribution sets. Moreover, the convergence results of the optimal values and optimal solutions for the approximation problems will be considered. Finally, in applications, we will establish a SSOCCP model for solving robust stochastic Nash equilibrium problems. Different numerical examples will be given and solved by using the presented deterministic models and corresponding algorithms. Through the numerical results, the advantages and disadvantages of different models will be analyzed and the feasibility of the algorithms will be confirmed.

二阶锥规划作为数学规划的重要分支有着重要而又广泛的应用前景。由于二阶锥规划的KKT条件可转化为二阶锥互补问题(SOCCP),因此,SOCCP是比二阶锥规划应用更广泛的均衡优化问题。由于实际问题的多样化,经常会涉及随机因素,漠视这些因素会导致决策失误。本项目将研究应用更广泛的随机二阶锥互补问题 (SSOCCP)。首先,本项目将建立求解SSOCCP的期望值模型、期望残差最小化模型、条件风险价值模型,提出相应模型的样本均值近似问题,并分别开发求解算法,考虑相应的收敛性及优化理论。其次,对于随机变量分布未知的情形,对上述三种模型将通过构造逼近分布集合,分别建立相应的逼近分布鲁棒优化模型,并分别考虑逼近问题最优值及最优解的收敛性。最后,在应用方面,建立求解鲁棒随机纳什均衡问题的SSOCCP模型,给出不同算例,利用提出的确定性模型及相应算法求解,分析数值结果,说明不同模型的优缺点,证实算法的可行性。

项目摘要

二阶锥规划作为数学规划的重要分支有着重要而又广泛的应用前景。由于二阶锥规划的KKT条件可转化为二阶锥互补问题(SOCCP)。因此,SOCCP是比二阶锥规划应用更广的均衡优化问题。由于实际问题的多样化,经常会涉及随机因素,漠视这些因素会导致决策失误。本项目研究应用更广泛的随机二阶锥互补问题 (SSOCCP)。但是由于随机因素的存在,SSOCCP通常情况下无解。为此,本项目建立求解SSOCCP的三种确定性模型,即期望值模型、期望残差最小化模型、条件风险价值模型。并将这三种确定性模型的解视为随机二阶锥互补问题的解。由于通常情况下,数学期望都很难计算,本项目应用样本均值近似方法分别给出期望值模型、期望残差最小化模型、条件风险价值模型相应的样本均值近似问题,并在理论上分别考虑相应近似问题的收敛性及优化理论。在应用方面,本项目考虑随机天然气传输问题及径向网络中随机最优潮流问题,并将所提出的求解模型及方法应用到实际问题中。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

黄河流域水资源利用时空演变特征及驱动要素

黄河流域水资源利用时空演变特征及驱动要素

DOI:10.18402/resci.2020.12.01
发表时间:2020
2

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
3

基于余量谐波平衡的两质点动力学系统振动频率与响应分析

基于余量谐波平衡的两质点动力学系统振动频率与响应分析

DOI:10.6052/1672⁃6553⁃2017⁃059
发表时间:2018
4

一种改进的多目标正余弦优化算法

一种改进的多目标正余弦优化算法

DOI:
发表时间:2019
5

变可信度近似模型及其在复杂装备优化设计中的应用研究进展

变可信度近似模型及其在复杂装备优化设计中的应用研究进展

DOI:10.3901/jme.2020.24.219
发表时间:2020

罗美菊的其他基金

批准号:11226238
批准年份:2012
资助金额:3.00
项目类别:数学天元基金项目
批准号:12026505
批准年份:2020
资助金额:6.00
项目类别:数学天元基金项目

相似国自然基金

1

随机二阶锥互补问题研究及其在最优潮流中的应用

批准号:11901320
批准年份:2019
负责人:王国欣
学科分类:A0407
资助金额:22.00
项目类别:青年科学基金项目
2

新的互补函数在二阶锥互补问题的算法及应用研究

批准号:11626212
批准年份:2016
负责人:马鹏飞
学科分类:A0405
资助金额:3.00
项目类别:数学天元基金项目
3

二阶锥上张量特征值互补问题的理论与算法研究

批准号:11801430
批准年份:2018
负责人:刘丽霞
学科分类:A0405
资助金额:21.00
项目类别:青年科学基金项目
4

非对称矩阵锥互补问题理论、算法的研究及其应用

批准号:11326187
批准年份:2013
负责人:王莉
学科分类:A0405
资助金额:3.00
项目类别:数学天元基金项目