Nanocomposites which made from layered double hydroxide (LDH) are also the important domain of new materials for their highly potential applications. In this study, the LDH is used as the fundamental material and the series new type hybrid solar cells (HSC) are tried to prepare by three ways, such as the intercalation of organic materials, delamination and restacking or reassembly, the solid state conversion of the lamellar template of LDH. We want to get the key technologies of the intercalation and assembly of the special dyes or organic semiconductors and LDH, also want to find the key technologies of the delamination and reassembly of the LDH, to study the solid state conversion of the lamellar template of LDH through the biomimetic catalysis technology, try to the key technologies and mechanisms of the nanocomposites and study their principles of supermolecular structure, electrical structure, specific energy gap and interaction of host-guest molecules. The new series of bulk heterojunction (BHJ) thin films are tried to get by molecule design, component adjustment and structure recombination from the nanocomposites based LDH. The compatibility and transmission performance of interfaces, modulation of energy gap and mobile laws of carriers will be studied for the BHJ. We hope the BHJ can be used in the HSC and investigate its work theory and principles. We try to make original HSC by optimizing the technological parameters and upgrade its performances, and to control the technologies of synthesis and assembly and the related principles of the new type HSC. At last, our work and study will help to expend and deepen the scientific knowledge of the properties and preparation of nanocomposites, extend the exploring direction of the HSC. Our work will also help to prepare a kind HSC with low cost, high efficiency and high stability by the nanocomposites based LDH, and to obtain the corresponding scientific theory and fundamental materials for the study of new energy.
基于层状双氢氧化物(LDH)的纳米复合材料具有极高的潜在应用价值,本课题拟以LDH为基础材料或前驱体,分别从插层组装纳米复合材料、拆层组装纳米复合材料和层状模板固态转变三个方面来尝试获得系列新型杂化太阳能电池材料。研究特定染料或有机半导体等功能客体与LDH通过插层组装或拆层组装获得新型纳米复合材料,研究生物矿化技术实现LDH结构模板材料的固态转变,考察复合材料的超分子结构、电子结构、能级特征、主客体相互作用,获得其关键制备技术及调控机理;进一步通过分子设计、结构复合和组分调整优化材料性能和界面特性,获得用于杂化太阳能电池的新型本体异质结,研究其界面相容性、传输性能、带隙调控、载流子产生复合转移机理;优化工艺参数设计制备原型太阳能电池,获得新型杂化太阳能电池组装制备技术及相关机理。本课题扩展了杂化太阳能电池的研究方向,有望获得廉价高效的杂化太阳能电池,为新能源研究提供相关科学依据和基础材料。
基于层状双氢氧化物(LDH)的纳米复合材料具有极高的潜在应用价值,本项目拟针对基于层状双氢氧化物纳米复合材料的新型杂化太阳能电池开展研究。经过优选,项目选择ZnTi、ZnSn、ZnAl三个二元LDH体系和ZnCdAl、ZnLaAl二个三元LDH体系作为主要研究对象,获得相关晶体结构规整的特定LDH主体骨架材料和制备规律;获得基于以上LDH的混合金属氧化物半导体材料,研究获得了ZnAl2O4、Zn2SnO4 和Zn2SnO4相关尖晶石的关键制备技术和锌铝镧复合氧化物以及锌镉铝复合氧化物的催化特性,发现ZnO与La2O3和CdO之间容易形成异质结,具有很好的光催化性能;掌握了基于以上LDH纳米复合材料的光阳极的关键技术;研究复合阳极中界面特性、能带调控、载流子产生复合转移机理,获得其电子输运性质、光吸收性质以及光电转化特性的调控机理与规律;获得系列新型染料敏化和量子点敏化太阳能电池,掌握新型杂化太阳能电池的关键组装制备技术及相关原理,获得新型高效稳定的杂化太阳能电池,证明了以上系列层状双氢氧化物为前驱体制备的复合氧化物可作为染料敏化和量子点敏化太阳能电池的光阳极,其中基于ZnSn-LDH制备DSSC电池效率达到了1.282%,基于ZnSn-LDH的CdS量子点敏化电池光电转换效率为0.48%;初步研究了石墨烯掺杂纳米复合氧化物光阳极在CdS量子点敏化太阳能电池方面的应用和相关机理,研究了基于ZnTi、ZnAl的QDSSC,结果表明引入石墨烯可以提高量子点敏化太阳能电池的光电转换效率,石墨烯/复合氧化物光阳极是非常有前景的杂化电极。本项目扩展了杂化太阳能电池的研究方向,获得了廉价高效的杂化太阳能电池,为新能源研究提供相关科学依据和基础材料,随着其光电转换效率的逐步提高和制备组装工艺的不断完善,可以为基于层状双氢氧化物的新型杂化太阳能电池产业化奠定必要的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
面向云工作流安全的任务调度方法
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
双吸离心泵压力脉动特性数值模拟及试验研究
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
原位聚合制备树脂基层状双氢氧化物纳米复合材料
镍基层状双氢氧化物超晶格复合材料的制备及电催化水分解性能研究
Zn/Mg/Al层状双氢氧化物/煤纳米复合矿物材料制备与阻燃性能研究
基于铁掺杂层状双氢氧化物的新型纳米诊疗剂的设计合成及诊疗性能调控