Along with the serious bone defect issue, it’s becoming a big challenge for clinical therapy that how to accelerate the repair of long bone defects. New blood vessels can shorten the time needed for repairing of bone defects. It’s crucial for bone quick repair to reveal the angiogenesis mechanism during the progress of bone regeneration. Our previous research identified that scaffolds seeded with MSCs could enhance new blood vessels formation in the early stage of bone repair in rabbit radium critical defect model and the VEGF secretion by MSCs was enhanced dramatically when MSCs were cultured under the simulated bone defect micro-environmental condition in vitro. These studies indicated that MSCs secrete VEGF could be the basis of angiogenesis in the bone repair progress. We propose that the VEGF secretion of MSCs is modulated by SDF-1/CXCR4 axis and MAPK signaling pathway, which is the critical point for vascular regeneration and then accelerating bone repair. Based on the previous works, in this proposal, we will fabricate one type of biomimetic 3D scaffolds which can recruit MSCs targeting bone defect area and induce MSCs osteogenesis. The obtained scaffold can release SDF-1 and recruit MSCs, help new blood vessels formation, and enhance bone regeneration. Furthermore, we will study the molecular mechanism of MSCs secreting VEGF enhancing bone repair in cell and animal models respectively through high resolution imaging technique, cell and molecular biology techniques, which will provide theoretical and experimental evidence for stem cells using in bone defect therapy clinically.
随着骨缺损问题的日益严重,大尺寸骨损伤的快速修复成为临床上亟待解决的难题。新生血管可以加速骨缺损的修复,揭示骨修复过程中血管新生的机制对骨缺损快速修复至关重要。我们发现,在兔桡骨缺损实验中支架复合MSCs可促进血管新生;进一步研究表明在模拟骨缺损微环境条件下培养的MSCs分泌VEGF显著增多。这些研究提示MSCs旁分泌VEGF可能是促进骨修复过程中血管化的基础。因此我们推测:MSCs受SDF-1/CXCR4轴调控通过MAPK通路介导VEGF分泌促进血管新生是加速骨缺损修复的关键。本项目拟在前期研究的基础上制备一种具有“靶向诱导功能”的仿生三维支架,该支架能够通过SDF-1缓释持续募集MSCs至缺损部位,并促进血管新生,提高骨缺损修复速度;进一步通过高分辨成像技术,细胞生物学、分子生物学等技术深入研究该支架诱导血管新生促进骨修复的分子机制,以期为干细胞临床应用于骨缺损治疗提供理论和实验依据。
大尺寸骨缺损的快速修复,不仅可以缩短患者的康复时间减轻其家庭的压力,也可以缓解日益紧张的医疗资源压力,对个体和社会都有重要的现实意义。在本研究中,我们开发了一种仿生三维支架,并对其体内外促进血管新生的机理进行了研究。.首先,我们在体内研究仿生三维支架在长骨缺损修复过程中促进血管新生的作用机理。.采用兔桡骨缺损模型(根据植入物分为五组:空白组(只缺损),对照组(仿生三维支架),实验组(仿生三维支架+耳缘静脉注射MSCs),实验组+AMD3100组(CXCR4拮抗剂),实验组+PD98059组(MAPK抑制剂)),研究在骨缺损区域植入仿生三维支架后,所募集的MSCs通过SDF-1/CXCR4轴对血管形成的调控机理以及对骨修复效果的影响。主要包括以下两方面:(1) SDF-1/CXCR4轴调控MSCs旁分泌VEGF促血管化研究。(2) 仿生三维支架对血管化及骨缺损修复的影响。.然后,我们在体外细胞水平研究MSCs分泌VEGF促进血管新生的相关机理。.在低氧环境中,将MSCs培养于仿生三维支架,来研究SDF-1/CXCR4轴介导的MSCs迁移、VEGF分泌及MAPK信号通路活化情况。实验分组情况如下:对照组(正常培养),实验组(低氧培养),实验组+AMD3100组(CXCR4拮抗剂),实验组+PD98059组(MAPK抑制剂)。通过比较各实验组不同时间点SDF-1/CXCR4结合、VEGF表达以及MAPK通路活化情况,揭示低氧微环境与三维支架拓扑结构共同作用,通过SDF-1/CXCR4轴调控VEGF表达,促进血管新生,最终加速骨修复的机理。.我们通过本研究提出以下机理:在骨缺损发生后,低氧环境使得SDF-1表达上调,表面表达CXCR4的MSCs被募集到损伤区域,并富集于骨组织工程支架上,MSCs表面形成SDF-1/CXCR4 轴,在低氧及支架拓扑结构的共同作用下,调控其下游的MAPK信号通路,使VEGF 表达升高,从而促进血管新生,进一步促进骨再生。
{{i.achievement_title}}
数据更新时间:2023-05-31
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
面向云工作流安全的任务调度方法
三维打印具有促进成骨/成血管效应的掺锂生物活性玻璃陶瓷支架用于颌骨大尺寸缺损修复及机制研究
仿生骨膜复合三维支架用于临界尺寸骨缺损修复研究
大尺寸仿生骨/软骨关节支架的增材制造与功能评估
可注射微尺度支架促进软骨下骨再生对软骨修复的作用机制研究