Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, which is characterized by the formation of senile plaques and neurofibrillary tangles in the brain, but the molecular mechanism of AD pathology is still not clear. In the senile plaques, Aβ is present in a β-sheet with high concentration metal ions (Cu/Zn/Fe), which are dyshomeostasis in AD brain. The redox active metals involved in Aβ peptides generally promote the aggregation of Aβ peptides and produce reactive oxygen species (ROS) by Fenton-type and Harber-Weiss-type reactions, resulting in extensive impairment of cellular functions. Aggregation and cytotoxicity of Aβ with redox-active metals in neuronal cells have been implicated in the progression of Alzheimer disease. Human metallothionein MT3 is highly expressed in the normal human brain and is downregulated by 30% in Alzheimer disease. In addition, the NGF deprivation regulated the shedding of APP to produce the ~35 kD fragment of amyloid precursor protein (N-APP) to activate caspases via death receptor 6 (DR6) dependent manner, resulting in neuronal apoptosis and axonal degeneration. .In this proposal we plan to investigate into the molecular mechanism of metal ions homeostasis regulation by metalloproteins such as human MT3 and APP. The structural basis and molecular mechanism of N-APP-DR6 interaction will be systematically studied, and the effects of metal ions ( Cu、Zn and Fe) on N-APP binding with DR6 will be explored. These metalloproteins including Zn7MT3, N-APP18-126, N-APP18-189, N-APP18-289, N-APP18-516 et al. will be expressed and purified, and all the proteins will be characterized by UV-Vis, CD, EPR, ICP-MS, ITC, SPR, Stopped-flow, et al. The neurotoxicity of various N-APP proteins with/without metal ions (Cu and/or Zn) on SH-SY5Y and the primary neurons will be assayed via a DR6 dependent manner. AD mice (APP/PS1) models will be applied to decipher the regulation role and mechanism of Zn7MT3 in AD brain for protection against the neuronal cytotoxicity of Aβ with redox metal ions. All these results will provide valuable insights into the role and molecular mechanism for Zn7MT3 as a therapeutic intervention to treat AD.
阿尔茨海默症(AD), 是一种神经退行性疾病,其确切的发病机理还是一个未解之谜。AD大脑中存在高浓度过渡金属离子(Cu、Fe、Zn)聚集,这些金属离子内稳态失衡可能是导致AD病的主要诱因之一。金属硫蛋白MT3在脑中特异表达,对脑金属离子稳态平衡具有调控功能,但在AD脑中表达量下调30%。另外,因神经生长因子缺乏产生的淀粉样前体蛋白N-端结构域(N-APP)与死亡受体DR6结合,引发神经细胞凋亡和突起损伤,N-APP有可能成为AD治疗的新靶点。本项目拟用多学科交叉技术,在分子、细胞和AD模型鼠水平上,揭示神经金属离子(Cu、Fe、Zn)、金属蛋白MT3和淀粉样前体蛋白APP代谢平衡的变化规律和调控分子机制,揭示N-APP与DR6结合导致神经细胞凋亡的结构基础和分子机制,阐明Zn7MT3在AD脑神经中的调控功能及其分子机制,为揭示AD病的病理分子机制和防治AD病的药物靶点和干预策略提供新思路。
阿尔茨海默症(AD), 俗称老年痴呆症,是一种脑部的神经退行性疾病,主要表现为进行性的记忆力减退,认知功能下降,身体机能下降,最终病人因大脑细胞的死亡而死亡。AD病的病理特征主要包括脑部Aβ淀粉样蛋白的聚集,高度磷酸化的tau蛋白形成的神经纤维缠结,脑部金属内稳态失衡,氧化压力升高,神经细胞凋亡等。金属硫蛋白MT3在脑中特异表达,对脑金属离子稳态平衡具有调控功能,但在AD脑中表达量下调30%。另外,因神经生长因子缺乏产生的淀粉样前体蛋白N-端结构域(N-APP)与死亡受体DR6结合,引发神经细胞凋亡和突起损伤,N-APP有可能成为AD治疗的新靶点。在本项目中,我们在AD模型鼠上系统地研究了金属硫蛋白3(MT3)对于改善阿尔茨海默症鼠的药效作用,探索了其发挥药效作用的分子机制,探究了MT3蛋白能否穿过血脑屏障的问题,并且通过连接跨膜小肽gH625增强了MT3的血脑屏障通透性。另一方面,在分子和细胞水平上研究了淀粉样前体蛋白(APP)的E1和E2两个结构域单独或协同与死亡受体因子6(DR6)蛋白的相互作用导致神经细胞凋亡的作用机制。.Zn7MT3能够调节脑部金属离子的内稳态平衡,减少脑部及血液中Aβ的含量,降低脑部氧化压力水平以及下调APP的表达水平。为了改善MT3的血脑屏障通透性,通过将gH625跨膜小肽连接在MT3的上游,得到了gH625-MT3融合蛋白。gH625-Zn7MT3具有与Zn7MT3相当的生物活性,同样可以拮抗Aβ-Cu所引起的细胞毒性,降低ROS水平,提高神经细胞活度。我们构建了荧光融合蛋白(CFP-E1,CFP-E2,CFP-E1-E2,YFP-DR6)和E2的表达载体,并成功实现上述蛋白的可溶表达,纯化得到纯度高于90%的蛋白。进而借助荧光共振能量转移(FRET)的方法在分子水平上证实了E1和E2都能与DR6蛋白发生相互作用,且二者协同与DR6的作用更强。另外通过检测细胞活度,ROS水平及细胞核DAPI染色,证实了E1与E2共同与DR6发生作用时,引起的细胞凋亡较单独作用更严重,印证了分子水平的结果。阐明了APP与DR6作用的分子机制,为其作为阿尔茨海默症的新的治疗靶点提供了理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
转录组与代谢联合解析红花槭叶片中青素苷变化机制
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
面向云工作流安全的任务调度方法
PRDX3介导的线粒体稳态失衡在阿尔茨海默症发病中的作用机制研究
阿尔茨海默症的突触损毁与补偿机制研究
硒蛋白P干预阿尔茨海默症的机制探讨
Nogo-A调控阿尔茨海默病Aβ代谢的分子机制