As the now shortest-wavelength high-power chemical laser in the world, chemical oxygen iodine laser (COIL) is highly promising in many applications, and has a vital significance in nation security. Although it has now nearly reached maturity in the aspect of engineering and technology after its development of over thirty years, COIL still remains at least two unsolved issues in the aspect of basic chemical reaction kinetics. These two issues are both related to singlet oxygen, the direct energy source of COIL. One issue is the mechanism of the singlet-oxygen-producing reaction of chlorine gas with hydrogen peroxide. Although it has once been considered as clear, the mechanism still has necessity to be deeply investigated again for the disagreement between our newest discovery that chlorine gas is very easy to react with non-basic hydrogen peroxide to produce singlet oxygen and the traditional viewpoint that singlet oxygen can not be produced by the reaction of non-basic hydrogen peroxide. The other issue is the exact values of the gas-phase quenching rate constants of singlet oxygen by helium and nitrogen gases. These two ultra-low rate constants which have never been measured out now have the feasibility to be exactly measured out based on the quasi-static-cell method recently developed by us and the scheme proposed by us that the reaction of chlorine gas with basic hydrogen peroxide is used to replace radio-frequency or microwave discharge to generate high-pressure singlet oxygen gas flow. Thus, to study and to solve the two above-mention issues become the content and the target of this project.
作为目前世界上波长最短的高能化学激光,化学氧碘激光(COIL)具有广阔的应用前景,对国家安全意义重大。经过三十多年的发展,COIL虽然在工程技术方面已经趋于成熟,但在基础的化学反应动力学方面至少仍然存在两个未解决的问题。这两个问题均与COIL的直接能源单重态氧有关。一个是产生单重态氧的氯气与过氧化氢反应的机理。虽然该机理曾经被认为已经清楚,但由于我们的最新发现"氯气与非碱性过氧化氢非常容易产生单重态氧"与传统观点"单重态氧不能由非碱性过氧化氢的反应产生"并不一致而依然有必要再进行深入研究。另一个是氦气和氮气对单重态氧的气相猝灭速率常数的确切数值。这两个从未被测出的极低速率常数,基于我们最近发展的准静态池方法和我们提出的用氯气与碱性过氧化氢反应代替射频或微波放电来产生高压单重态氧气流的方案,目前有了被准确测量的可能。本项目的内容和目标就是要研究和解决上述这两个问题。
作为目前世界上波长最短的高能化学激光,化学氧碘激光(COIL)具有广阔的应用前景,对国家安全意义重大。经过三十多年的发展,COIL虽然在工程技术方面已经趋于成熟,但在基础的化学反应动力学方面至少仍然有两个未解决的问题,这两个问题均与COIL的直接能源单重态氧有关,一个是产生单重态氧的氯气与过氧化氢反应的机理,另一个是氦气和氮气对单重态氧的气相猝灭速率常数的确切数值。本项目将基于我们的最新发现来重新研究氯气与过氧化氢的反应机理,基于我们最近发展的新方法和新技术来设法测出氦气和氮气对单重态氧的气相猝灭速率常数。本项目取得了如下成果:(1)弄清了氯气与过氧化氢溶液反应产生单重态氧的机理机理,该机理由六条相对独立的反应途径来构成,可以完满解释了历史上与该反应相关的各种现象和问题。(2)成功测量出25摄氏度下氦气和氮气对单重态氧的气相猝灭速率常数分别为 (2.9+-0.3)x10-21cm3s-1(He)和(6.26+-0.41)x10-21cm3s-1(N2)。(3)通过实验进一步证实了界面扩散阻力是氯气与碱性过氧化氘反应中的单重态氧产率损失的关键原因。(4)发明了用于加氢燃油脱硫的加氢燃油转化处理方法和装置。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
资本品减税对僵尸企业出清的影响——基于东北地区增值税转型的自然实验
气载放射性碘采样测量方法研究进展
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
碘氧化物等对放电产生单重态氧的作用机理研究
单重态氧在细胞中的动力学研究
化学氧碘激光增益分布的研究
单重态氧在气液界面上猝灭动力学研究