To navigate effectively through a complex three-dimensional (3D) environment, we must accurately estimate our own motion relative to objects around us. Perception of self-motioni is a multi-modal process involving integration of visual, vestibular, and proprioceptive cues. Until now, the neural basis of multisensory integration for self-motion remains poorly understood. A major reason for this is the lack of a good animal model in which both the psychophysics and neurophysiology of sensory integration can be examined simultaneously. We have developed a virtual-reality motion system that allows us to flexibly present visual and inertial motion stimuli that can accurately simulate self-motion through a 3D virtual environment. We have also developed a multimodal heading discrimination task, in which we can demonstate that rhesus monkeys perceptually integrate visual and vestibular cues in a near-optimal fashion consistent with the Bayesian framework. These developments leave us uniquely positioned to study the neural mechanisms of multisensory integration during a behavior in which cue integration is known to be taking place. In the current proposal, three major goals are concerned: 1) how the neural activities related with self-motion judgments; 2) what is the reference frame of heading selectivity based on visual and vestibular cues; 3) how visual and vestibular sensory signals are properly integrated. We propose a combination of computational modeling, psychophysics, electrophysiology, electrical micro-stimulation and inactivationi aimed at elucidating the neural basis of optimal multisensory integration.
要在复杂的三维环境中自由活动,我们必须准确地估算自己与周围物体之间的相对运动,这个过程称之为自身运动知觉(self motion perception),需要多种感觉信息的共同参与,包括视觉、前庭、触觉以及本体感觉等。到目前为止,其形成的具体机制尚不清楚。本项目以清醒灵长类为研究对象,运用虚拟现实的技术将视觉和前庭刺激精确匹配,对自身运动进行模拟,采用电生理、行为心理学、神经信息学方法,并结合微电流刺激和可逆药物失活技术,来研究:1)不同皮层区域神经元活动与自身运动知觉之间的功能性联系;2)不同感觉信息编码所采用的参考系;3)视觉和前庭信息整合的统计学概率。另外,本项目将首次采用垂直方向的多通道电极在有眼动/头动的朝向判别任务下,对皮层的多个部位进行同步记录,从神经网络的层次上对自身运动知觉的多感觉整合机制进行研究,并为运动病和空间定向障碍的发病机制及预防提供理论依据。
要在复杂的三维环境中自由活动,我们必须准确地估算自己与周围物体之间的相对运动,这个过程称之为自身运动知觉,需要多种感觉信息的共同参与,包括视觉、前庭、触觉以及本体感觉等。到目前为止,其形成的具体机制尚不清楚。本项目以清醒灵长类为研究对象,运用虚拟现实的技术将视觉和前庭刺激精确匹配,对自身运动进行模拟,采用电生理、行为心理学、神经信息学等方法,并结合微电流刺激和可逆药物失活技术,来研究皮层多感觉整合的神经机制。结果发现:1)VIP中单个神经元水平上存在视觉和前庭整合的现象,并且某些神经元的放点活动和朝向知觉高度相关;2)VIP中神经元对视觉和前庭信息的编码都存在一定的聚类性,并对与自身运动过程中朝向判别行为进行的表征也存在聚类性; 3)失活PIVC后,前庭刺激条件先猕猴对朝向判断的阈值显著增加,而双侧失活VIP只对朝向判断行为有很小的影响。这些对自身运动知觉的多感觉整合机制进行的研究,为运动病和空间定向障碍的发病机制及预防提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
基于多模态信息特征融合的犯罪预测算法研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
多空间交互协同过滤推荐
多源数据驱动CNN-GRU模型的公交客流量分类预测
视觉运动识别中信息整合的认知神经机制
灵长类动物自身运动朝向感知中视觉形态和视觉运动线索相互作用的神经机制
感觉-运动信息整合在猕猴大脑皮层神经生理机制的研究
前庭-视觉跨模态适应对认知影响的神经机制