Micro-pressure waves will be generated by high-speed trains passing through tunnels with the amplitude increases with the tunnel length. As the tunnel length reaches the range of [7km, 10km], the micro-pressure wave will aggravate to blasting noise which will bring about negative influence on the ride comfort and ambient environment, even cause disaters if seriously. How to develop a simulation method for the micro-pressure wave in bent tunnels and long tunnels, reveal its generation and transmission mechanism, finally propose feasible protective measures has became the forefront problem to be solved urgently in current high-speed railway development. Through researches on the physical generation mechanism of micro-pressure waves, this project proposes a domain partition calculation method based on overlapping grid which can not only simulate the peak value of the micro-pressure wave in bend tunnels and long tunnels accurately but also improve the calculation speed significantly. The method includes two main computational steps: (a) a dynamic reconfiguration grid technology is adopted at the entrance domains of tunnels containing trains to calculate the compression wave generation inside the tunnel; (b) a stationary grid algorithm is utilized at the exits and other domains of tunnels without trains to calculate the micro-pressure wave generation and transmission as well as the compression wave propagation. The implementation of this project will build an rapid forecasting and analyzing method for the micro-pressure wave in bend tunnels and long tunnels, providing technical support to the design of geometric parameter, buffer and portal structure for bent tunnels as well as micro-pressure wave prediction and safety evaluation.
高速列车过隧道时,在隧道出口将产生微气压波,其幅值随隧道长度增加而增大,隧道长度达7~10km时,微气压波将大幅增加形成爆破声,对乘坐舒适性和周围环境产生严重影响,甚至出现灾害。如何模拟预测长隧道和弯隧道微气压波,揭示其形成和传播机理,提出防护措施与解决办法,已成为目前高速铁路发展急待解决的前沿问题。本项目拟通过分析微气压波形成的物理机理,提出一种基于动态重叠网格的微气压波区域分解算法,将计算分为两步:首先,在隧道入口区域采用包含列车的动态重叠网格技术计算隧道内压缩波的生成;然后,在隧道的其他区域及出口采用不包含列车的静止网格计算压缩波的传播和微气压波的生成。该方法既可以较准确地模拟长隧道和弯隧道微气压波的峰值,又可以大幅提高计算效率。项目的实施将建立一种长隧道和弯隧道微压波的快速预测分析手段,为长隧道和弯隧道的断面、缓冲结构和洞门等的设计、微压波的预测与安全评估提供技术支持。
高速列车过隧道时,在隧道出口将产生微气压波,其幅值随隧道长度增加而增大,隧道长度达7~10km时,微气压波将大幅增加形成爆破声,对乘坐舒适性和周围环境产生严重影响,甚至出现灾害。如何模拟预测长隧道和弯隧道微气压波,揭示其形成和传播机理,提出防护措施与解决办法,已成为目前高速铁路发展急待解决的前沿问题。本项目通过分析微气压波形成的物理机理,提出一种基于动态重叠网格的微气压波区域分解算法,将计算分为两步:首先,在隧道入口区域采用包含列车的动态重叠网格技术计算隧道内压缩波的生成;然后,在隧道的其他区域及出口采用不包含列车的静止网格计算压缩波的传播和微气压波的生成。该方法既可以较准确地模拟长隧道和弯隧道微气压波的峰值,又可以大幅提高计算效率。项目的实施建立了一种长隧道和弯隧道微压波的快速预测分析手段,为长隧道和弯隧道的断面、缓冲结构和洞门等的设计、微压波的预测与安全评估提供技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
物联网中区块链技术的应用与挑战
基于图卷积网络的归纳式微博谣言检测新方法
一种改进的多目标正余弦优化算法
极地微藻对极端环境的适应机制研究进展
列车高速过隧道人耳气压伤损伤机理及风险研究
高速列车过隧气压爆波预测及外形优化研究
隧道摩擦效应对高速铁路隧道压缩波传播与演变的作用机理
高速地铁隧道压力波计算和软件化方法及规律研究