As a key technology of coal gasification, entrained-flow gasification is one of the core technologies for clean and high efficiency utilizing of coal, and is the basis for developing coal-based industries, such as chemical products, liquid fuel, hydrogen production, etc., while entrained-flow gasifier can be an effective equipment or reactor for realizing gasification process. Refractory plays an important role in gasifier, it isolates and accumulates heat, constructs working space and constrains flow field in gasifier. As a result, refractory is serving under severe conditions and suffering from high temperature gas, particles and slag, which cause corrosion and erosion. Based on a bench-scale opposed multi-burner gasification platform, the three-dimensional temperature distribution of refractory under hot model condition is reconstructed by on-site visualization techniques and temperature reconstruction algorithm in gasifier, while the high speed imaging is applied to investigate the particle/slag deposition and erosion characteristics on refractory. The after used refractory from both bench-scale gasifier and industrial gasifier are analyzed and compared under macro and micro scale for obtaining superficial characteristics and statistical results, which are coupled with numerical simulation of particle flow field structure and three-dimensional temperature distribution as well as thermodynamic simulation, in order to reveal the erosion and corrosion characteristics, statistical law and full-gasifier refractory subarea failure mechanism of refractory. The results of this research would be applied for the development of new type of refractory structure as well as refractory material, the optimization design of ultra-scale clean and efficient industrial gasifier, and the long period, security and steady operation of the whole gasification system.
气流床煤气化是煤炭清洁高效转化的核心技术,是发展煤基化学品、液体燃料合成、制氢等过程工业的基础,是煤炭气化重要发展方向,气流床气化炉是实现气化过程的核心设备和载体。耐火砖作为气流床气化炉最重要的组成元素之一,起到隔温、蓄热和流场约束等作用,在构建气化炉内有效空间的同时,又受到高温气流、颗粒和熔渣的冲刷和侵蚀,工作环境恶劣。本项目基于气流床气化热态试验平台,通过炉内可视化及算法重建热态气化炉耐火砖壁面三维温度场,辅以炉内高速成像技术探究颗粒及熔渣壁面沉积和侵蚀过程特性,开展用后试验气化炉和工业气化炉耐火砖宏观及微观结构的对比剖析、表征和统计分析,结合炉内气相、颗粒相流场结构、温度场数值模拟及热力学计算结果,共同揭示气化过程耐火砖物理、化学侵蚀特性及规律,构建系统的全炉膛耐火砖分区蚀损机理模型,服务于新型耐火砖结构和新材料的开发、超大规模清洁高效气化炉的优化设计及气化系统的长周期安全稳定运行。
气流床煤气化是煤炭清洁高效转化的核心技术,是发展煤基化学品、液体燃料合成、制氢等过程工业的基础,是煤炭气化重要发展方向,气流床气化炉是实现气化过程的核心设备和载体。耐火砖作为气流床气化炉最重要的组成元素之一,起到隔温、蓄热和流场约束等作用,在构建气化炉内有效空间的同时,又受到高温气流、颗粒和熔渣的冲刷和侵蚀,工作环境恶劣。本项目基于气流床气化热态试验平台,通过炉内可视化及算法重建热态气化炉耐火砖壁面三维温度场,辅以炉内高速成像技术探究颗粒及熔渣壁面沉积和侵蚀过程特性,开展用后试验气化炉和工业气化炉耐火砖宏观及微观结构的对比剖析、表征和统计分析,结合炉内气相、颗粒相流场结构、温度场数值模拟及热力学计算结果,共同揭示气化过程耐火砖物理、化学侵蚀特性及规律,构建系统的全炉膛耐火砖分区蚀损机理模型,服务于新型耐火砖结构和新材料的开发、超大规模清洁高效气化炉的优化设计及气化系统的长周期安全稳定运行。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于多模态信息特征融合的犯罪预测算法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
钢筋混凝土带翼缘剪力墙破坏机理研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
多空间交互协同过滤推荐
气流床气化炉内颗粒破碎及沉积特性研究
基于机理和数据驱动的气流床气化炉耐火砖状态在线监测研究
气流床气化炉内高温颗粒群动态特性可视化研究
气流床气化炉内稠密气固撞击流介尺度机制及调控研究