Anti-reflective coatings is a high-demand technology in order to achieve high contrast and brightness in display devices such as liquid crystal display, light-emitting diode, and organic light-emitting diode; also it has been widely used in solar cells, lasers, and advanced optical elements. However, the anti-reflective effects from conventional technique only work substantially for a limited wavelength range and for an incidence angle close to the normal incidence. It was discovered about a decade ago that nano- and micro-scale morphologies of polymer films could make the material suitable for high-performance anti-reflective coatings. Yet the multi-step technology for coating formation is very complicated, there are many remaining challenges in applying it into industrial applications. Here we propose a novel route to form high-performance anti-reflective coatings by using a laser processing method - Matrix-assisted Pulsed Laser Evaporation (MAPLE). The properties of ideal anti-reflective coating will be achieved by manipulation of the film structure in micro- and nano-scale during film formation. Together with the analysis of stability of polymer films, the proposed work will systematically exploit the optical performance of the anti-reflective coatings. This project attempts to attain gradient refractive index in the film and and the distributed biomimetic cone-cylinder structure on the surface, which could be obtained by micro- and nano-scale maniuplation of macromolecules. In addition, MAPLE technique ensures the rapid and highly controllable formation of the desired advanced materials . Therefore, this project should not only provide opportunities for developing a novel and simple method of manufacturing high performance anti-reflection coatings, but also impact the state-of-the-art technologies employed in optical and energy industries.
光学增透膜因能显著提高显示设备性能而具有很高的市场需求。它可使LCD、LED和OLED提高亮度和对比度,被广泛应用于太阳能电池、激光和先进光学元件等领域。由传统方法制备的增透膜受技术局限只能在较窄的波长、较小的入射角度范围内工作。近年来,研究发现具有微纳尺度形态特征的高分子薄膜适于研制高性能的抗反射涂层,但其制备技术复杂,难以广泛应用。本项研究拟运用基质辅助脉冲激光气相沉降探索高性能的高分子光学增透膜制备技术,通过调控高分子材料的聚集态结构使之达到理想增透膜的性能要求。拟开展工作将系统探究所制备薄膜的微纳结构与光学性能的关系,并结合高分子材料的稳定性进行综合性能优化。项目将紧紧围绕高分子聚集态结构调控研究具有渐变折射率和表面仿生结构的复合型宽频增透膜,并实现这种高性能材料的快速控制备。本项研究将进一步发展高分子光学材料的制备科学,也将对光学元器件、激光、先进光伏等领域产生影响。
近年来,由于精密光学、半导体制造以及生物科技的不断发展,高分子薄膜得到了越来越广泛的关注。其中高分子增透膜因其低廉的价格、良好的附着性、便于大范围成膜等优点得到研究者们的重视。同时,高分子薄膜结构的多样性和可控性,使得高分子增透膜能够方便的在宽波段实现增透的目的。.本项工作基于高分子微相分离的原理,通过旋涂和热处理并结合脉冲激光辅助气相沉积方法,成功制备了相尺度小于可见光波长的高分子纳米薄膜,并通过AFM和SEM表征对形成的两种相分离结构进行了进一步研究。通过对于热处理温度、时间、分子量即共混配比的系统研究,总结了现有高分子体系热处理时相分离的条件和过程。通过去除相后对薄膜透射率的测量,成功得到了在可见光平均透射率(~94.7%)高于原始玻璃基片(~90.7%)的高分子薄膜。同时,在已有高分子膜基础上,通过基质辅助气相沉积(MAPLE)技术,在表面沉积PMMA蛾眼结构,最终形成PMMA双层结构薄膜;同时研究分子量,基底对MAPLE沉积形貌的影响,揭示了高分子沉积物质的热力学运动性。本项目研究的实施为进一步研发高分子光学器件增透膜、太阳能电池光能捕获层等奠定了基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
“章鱼触角”膨润土/高分子快速高效止血材料的可控制备及止血机制
多系统RTK精度可控的多尺度、超快速定位技术研究
逐步偶联聚合法制备可控结构交联高分子非线性光学膜
石墨烯/高分子自组装复合薄膜的可控制备及其光学气敏性能研究