As a normal phenomenon of mechanical brake, the friction noise affects seriously the braking NVH performance and driving comfort of automotive, which also causes noise pollution to urban environment. The current noise reduction methods were mainly developed from aspects of brake structure and materials, while few researches were attempted from an exterior field to intervene and regulate brake friction noise. Aiming at eliminating friction noise, in this project the disc brake of automotive is chosen as research object to propose an active noise reduction strategy by magnetic field applied on friction interface. Firstly, the friction noise experiments of brake under magnetic field and the microscopic performance analysis tests on contacting interface will be carried out, to investigate the characteristics of friction noise under magnetic field both in time and frequency domain. Correspondingly, the characterization method of brake friction noise will be built. Secondly, the correlation between magnetic field and friction noise will be analyzed to reveal the influencing laws and reduction mechanisms of how magnetic field works on friction noise. Then, a mapping relationship model between magnetic field and brake friction noise will be established. Finally, the fast and accurate on-line monitoring and identifying method of brake friction noise will be studied. And an intelligent control algorithm based on fuzzy theory and genetic algorithm will be proposed to achieve the friction noise reduction algorithm by magnetic field. Besides, an intelligent control model of brake friction noise based on magnetic field will be built. It is believed that this project can bring both important theoretical impact and practical value for improving the braking NVH performance and reducing the friction noise pollution. Moreover, it can also provide useful reference for the reduction of friction noise in other fields.
机械制动器摩擦噪声普遍存在,严重影响制动NVH性能和驾乘舒适性,并给城市环境造成噪声污染,现有降噪措施主要从制动器结构和材料方面展开,还没有人利用外场来干预和调控制动摩擦噪声。本项目以汽车盘式制动器为研究对象,以消除摩擦噪声为研究目标,提出基于磁场的制动器摩擦噪声主动降噪策略。开展磁场作用下的制动器摩擦噪声试验和制动副界面微观性能分析试验,研究磁场作用下制动器摩擦噪声的时频状态特征,构建制动器摩擦噪声客观表征方法;分析磁场参数与摩擦噪声特征参量的相关性,揭示磁场对摩擦噪声的影响规律及抑制机理,构建磁场与制动器摩擦噪声之间的映射关系模型;研究制动器摩擦噪声信号的在线监测与快速识别方法,基于模糊理论与遗传算法提出摩擦噪声磁场控制算法,构建基于磁场的制动器摩擦噪声智能调控模型。研究结果对于改善汽车制动NVH性能、降低摩擦噪声污染具有重要理论意义和实用价值,也可为其他领域摩擦噪声治理提供有益参考。
机械制动器摩擦噪声普遍存在,严重影响车辆制动NVH性能和驾乘舒适性,并给城市环境造成噪声污染,现有降噪措施主要从制动器结构和材料方面展开,在本项目之前还很少有人考虑利用外场来干预和调控制动摩擦噪声。本项目提出了基于磁场的制动器摩擦噪声主动降噪方法,并通过理论分析与试验探索进行了验证。首先,研制磁控盘式制动器装置,升级改造了制动器摩擦噪声与振动试验台;利用谐波小波包变换,分析了磁场作用下制动摩擦噪声信号时频特征;研究了制动摩擦声振表征参数及其提取方法,构建了磁场作用下制动摩擦噪声表征体系。其次,分别开展有/无磁场作用下制动器摩擦声振试验,研究制动工况对制动摩擦噪声影响规律,揭示了制动摩擦噪声的发生机理;分析交变/直流磁场对制动摩擦噪声的影响规律,构造了磁场作用下制动噪声数据集;建立基于LSTM神经网络的制动噪声预测模型,定量分析了磁场参数与噪声特征之间的映射关系;开展磁控盘式制动器磁场分布仿真试验,并借助SEM、EDS和BSE等现代分析测试技术,探讨了磁场对制动摩擦声振的抑制机理。最后,根据制动摩擦声振信号特点,设计了制动摩擦声振实时采集系统,研究了磁场作用下制动摩擦噪声状态信号的在线监测方法;定义制动器摩擦噪声故障类别,利用支持向量机和稀疏编码等智能算法,开发了制动器摩擦噪声故障识别和在线诊断系统;制定基于磁场的制动摩擦噪声智能调控策略,研究基于磁场的制动摩擦噪声智能调控模型,揭示了磁场作用下制动摩擦噪声的变化趋势及机理。本项目揭示了磁场对制动摩擦噪声的抑制机理,实现了基于磁场的制动摩擦噪声调控,研究结果对于改善车辆制动NVH性能、降低摩擦噪声污染具有重要理论意义和实用价值,也可为其他领域的摩擦噪声治理提供有益参考。在项目执行期内,共发表或录用标注本项目资助的学术论文8篇,申请和授权与本项目相关的发明专利3件,直接或间接培养青年教师与研究生10人。
{{i.achievement_title}}
数据更新时间:2023-05-31
钢筋混凝土带翼缘剪力墙破坏机理研究
物联网中区块链技术的应用与挑战
吉林四平、榆树台地电场与长春台地磁场、分量应变的变化分析
动物响应亚磁场的生化和分子机制
人工智能技术在矿工不安全行为识别中的融合应用
机械制动器摩擦故障快速融合诊断与智能预报方法研究
基于波纹状变形发生与演化的制动器摩擦热斑机理研究
基于界面超亲水改性的水润滑橡胶轴承摩擦学行为与噪声抑制机理研究
基于纳米摩擦与加工表面重构的机械刻蚀加工机理研究