Hydroxysafflor yellow A (HSYA) is the main effective chemical component of the safflower. It has been demonstrated to have anti-cerebral ischemia injury effect. Previous research has indicated that HSYA can be hydroxylated and methylated rapidly after entering mammal body, and HSYA and its metabolites both do coexist to play pharmacodynamics. However, the biological activity of HSYA metabolites is unknown, mainly as difficult extraction and purification of traces of metabolites. Aim at this problem, the applicant proposed that high efficient preparation of HSYA metabolites can be performed by microbial transformation model for biological activity research. In this study, efficient heterologous expression of human CYP450 and O-methyltransferase will be performed in Saccharomyces cerevisiae based on CRISPR/Cas9 to simulate hydroxylation and methylation drug metabolism of human body and high efficient prepare HSYA metabolites. Then anti-cerebral ischemia injury research will be performed to reveal the biological activities of HSYA metabolites. The implementation of this project will deepen the comprehension on the material basis of HSYA pharmacodynamics, lay the technology foundation of Chinese medicinal pharmacology, provides an opportunity for development of innovative drugs.
羟基红花黄色素A(简称羟A)是中药红花的主要活性成分,具有抗脑缺血损伤生物活性。前期研究表明,羟A进入哺乳动物体内会迅速被羟基化和甲基化,此后羟A及其代谢物同时存在于哺乳动物体内发挥药效。然而目前羟A羟基化/甲基化代谢物的生物活性尚不明确,这主要因为羟A代谢物在动物体内含量极少,提取纯化困难。针对这一问题,申请者提出基于微生物转化模型高效制备羟A代谢物,以用于生物活性研究的思路。本项目尝试以Saccharomyces cerevisiae作为微生物宿主细胞,基于CRISPR/Cas9技术开展人源CYP450酶和氧甲基转移酶的高效异源表达,模拟人体药物代谢的羟基化和甲基化途径,高效制备羟A代谢物,并用于抗脑缺血损伤活性研究,从而揭示羟A羟基化/甲基化代谢物的生物活性。本项目的实施不仅能更深入地理解羟A发挥药效的物质基础,还能为中药药理研究提供技术基础,并为新药创制提供契机。
{{i.achievement_title}}
数据更新时间:2023-05-31
神经退行性疾病发病机制的研究进展
氧化应激与自噬
肺部肿瘤手术患者中肺功能正常吸烟者和慢阻肺患者的小气道上皮间质转化
不同类型水稻土微生物群落结构特征及其影响因素
巨噬细胞在子宫内膜异位症中作用的研究进展
基于“药-酶”相互作用的羟基红花黄色素A体内代谢及作用机制研究
羟基红花黄色素A抑制LPS激活TLR4受体的机制研究
红花抗脑缺血损伤活性成分红花新苷、醌式查尔酮苷及其合成类似物构效关系研究
基于cDNA文库基因测序及芯片分析技术的羟基红花黄色素A生物合成途径的研究