Carbon monoxide (CO) exerts anti-inflammatory, antioxidant, anti-apoptosis and multiple protective effects, is an important gaseous molecules. Our previous study confirmed that endogenous CO production induced by Hemin can protected postresuscitation myocardial dysfunction in rats and hypoxia/reoxygenation injury in cultured myocardial cells, and CO significantly protected myocardial mitochondrial integrity and mitochondrial aerobic respiratory function during reoxygenation period. However the mechanism of protective effect of CO is unknown. Since CO can be combined with the mitochondrial respiratory complex enzyme IV, We first proposed the possible mechanism of protective role of CO against ischemic myocardial injury. It is that carbon monoxide can be competitively combined with the mitochondrial respiratory complex enzyme during the period of ischemia, inhibit mitochondrial electron transfer chain, transiently inhibit abnormal mitochondrial oxygen phosphorylation function to reduce reactive oxygen species and to protect the respiratory chain; Mitochondrial respiratory chain having being protected during ischemia phase has relatively normal oxidative phosphorylation function during reperfusion period, myocardial injury is reduced. In this project we use exogenous CO in ischemia / hypoxia phase to intervene cardiopulmonary resuscitation rats model and cultured myocardial cells in vitro, separately observe mitochondrial structure and function of oxidative phosphorylation, respiratory complex enzyme activities in myocardial ischemia /hypoxia phase and reperfusion / reoxygenation phase by the Clark electrode, high performance liquid chromatography, laser confocal microscopy and other methods, to clarify the mechanism of CO protection of mitochondrial respiratory function of the myocardial cells, and to provide a scientific basis for clinical rescue cardiac arrest patients using CO.
一氧化碳(CO)有抗炎、抗氧化、抗凋亡等多重保护效应,是重要气体信使。我们前期研究证实诱导内源性CO产生可有效保护大鼠复苏后心功能和缺氧复氧损伤心肌细胞,且明显保护心肌线粒体的完整性和再复氧期线粒体有氧呼吸功能,但其保护机制未明。CO仅于低氧环境结合线粒体呼吸复合酶IV,我们首次提出CO保护缺血/缺氧细胞损伤的可能机制,即缺血期CO竞争结合线粒体呼吸复合酶,抑制电子传递,暂时性抑制缺血期线粒体异常的氧化磷酸化功能,减少活性氧,保护呼吸链;再复氧期呼吸链完整的线粒体氧化磷酸化功能相对正常,心肌损伤减轻。本项目采用一氧化碳释放分子-2于缺血/缺氧期干预大鼠和培养的心肌细胞,通过Clark电极、高效液相色谱、激光共聚焦显微镜等方法,分别观察心肌缺血/缺氧期和再灌注/复氧期线粒体结构、氧化磷酸化功能、呼吸复合酶活性,阐明CO保护心肌细胞线粒体呼吸功能的机制,为CO用于临床抢救心跳骤停提供科学依据。
复苏后心功能不全(PRMD)仍是导致早期高死亡率的主要原因,但目前尚缺乏有效干预复苏后心肌顿抑的手段。低浓度一氧化碳具有抗炎,抗氧化、抗凋亡、血管保护等多重效应,是维持细胞自稳态,促进细胞存活的重要信使分子。我们前期研究已证实诱导内源性CO产生,可有效保护心肺复苏大鼠缺血再灌注损伤心肌和体外培养缺氧再复氧损伤心肌细胞,尤其对心肌能量代谢细胞器—线粒体具有明确保护作用,但保护机制不详。本研究体外实验部分,建立乳鼠心肌细胞体外氧糖剥夺缺氧再复氧损伤模型,使用不同浓度梯度一氧化碳释放分子3(CORM-3)于缺氧期加入细胞培养液,缓慢,持续,可控的释放CO,模拟内源性CO产生过程干预细胞。结果显示12.5μmol/L 小剂量CORM-3 对缺氧再复氧心肌细胞保护作用最强,可维持线粒体外膜完整性,减少线粒体细胞色素C释放,降低心肌细胞Caspase-3,Caspase-9蛋白表达,减少心肌细胞凋亡,改善线粒体呼吸复合体IV酶活性,保护线粒体电子传递链和氧化磷酸化功能,增加再复氧末心肌细胞ATP产生,明显减少心肌细胞缺氧末和再复氧末ROS产生,改善心肌细胞能量代谢。本研究体内实验建立大鼠心脏骤停心肺复苏复苏后心功能不全模型,于复苏前12h使用不同剂量CORM-2腹腔注射处理大鼠。结果证实4mg/kg 小剂量CORM-2明显改善大鼠复苏后心功能,减轻心肌损伤,保护大鼠心肌线粒体超微结构完整。CORM-2干预组大鼠复苏后4h心肌细胞线粒体呼吸复合体Ⅳ酶活性较CPR组改善,ROS生成减少,线粒体细胞色素C释放至胞浆减少,凋亡蛋白Caspase-3, Caspase-9产生减少。从在体水平证实CORM-2可保护心肺复苏大鼠心肌线粒体电子传递链和氧化磷酸化功能,减少ROS产生,减少线粒体途径介导的心肌细胞凋亡。此外,本研究增加了CORM-2对心肺复苏大鼠心肌线粒体动力学平衡影响的研究。结果证实CORM-2可减少心肺复苏大鼠心肌线粒体分裂,促进融合,也可能是CORM-2保护PRMD的机制。本研究揭示了一氧化碳释放分子保护缺血再灌注/缺氧再复氧损伤心肌细胞线粒体的机制,为临床使用CO抢救心跳骤停心肺复苏患者提供新的治疗策略。
{{i.achievement_title}}
数据更新时间:2023-05-31
线粒体自噬的调控分子在不同病生理 过程中的作用机制研究进展
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
Image super-resolution based on sparse coding with multi-class dictionaries
Phosphorus-Induced Lipid Class Alteration Revealed by Lipidomic and Transcriptomic Profiling in Oleaginous Microalga Nannochloropsis sp. PJ12
血红蛋白类携一氧化碳载体CO-PolyPHb对重度烫伤延迟复苏大鼠心肌保护及功能重建的机制研究
δ阿片受体诱导药物性心肌冬眠保护复苏后心功能机制的研究
Cr(Ⅵ)干扰肝细胞线粒体电子传递链功能的作用机制研究
Miro1介导的线粒体动力学对心肺复苏后神经元保护作用及机制研究