Rare sugars, such as D-psicose, allitol, are low-calorie and have special physiological activity, so there is the applied potential. The rare sugars can be synthesized using enzyme immobilization method. However, the conversion efficiency and stability of the enzymes is low, which could influence the development of the bioconversion of functional rare sugar. In this study, we put forward a novel strategy to increase the conversion rate of rare sugars by using the multi-enzyme coupling system. The D-psicose 3-epimerase and ribitol dehydrogenase will be transformed into the model microorganism E. coli to construct a new metabolic pathway, in which D-psicose and allitol will be produced using D-fructose as the substrate. Firstly, the two key enzymes will be modified to obtain mutant proteins with better stability using protein structure analysis and homology modeling of protein. Secondly, according to the metabolic network of E. coli, some metabolic pathways will be modified not only to increase the rate at which substrate is transported into cells, but also to reduce the consumption of the substrate and coenzyme factor NADH. Finally, the expression of key enzymes will be precisely regulated using promoter library and multiple gene co-expression technology, and the mechanism of multi exogenous protein expression in engineered E. coli strain will be revealed. The multi-enzyme coupling cell model with high conversion rate of rare sugar will be constructed in this project, which has great significance to the synthesis of other functional rare sugar and their derivatives.
D-阿洛酮糖、蒜糖醇等稀少糖醇具有低热量、独特生理学功能,具有较大应用潜力。利用酶固定化技术可以生物转化稀少糖醇,但其转化效率低,酶稳定性差,阻碍了生物转化功能性稀少糖的发展。本项目提出利用多酶偶联体系提高稀少糖醇转化率的新策略,即将新型的阿洛酮糖差向异构酶和核糖醇脱氢酶所催化反应导入大肠杆菌模式微生物宿主中,构建以D-果糖为底物转化合成D-阿洛酮糖和蒜糖醇的代谢途径。本研究首先利用蛋白结构解析和同源建模技术对关键酶基因定向改造,获得稳定性好的转化酶;根据大肠杆菌代谢网络模型对代谢途径进行改造,利用糖透过酶提高底物进入细胞的转运速率,同时将底物与辅酶NADH的竞争性消耗降至最低;通过启动子文库及多个基因协同表达技术对蛋白表达进行精确调控研究,揭示大肠杆菌代谢工程菌中多个外源基因合理表达机制。本研究构建稀少糖醇高效转化多酶偶联细胞膜型,对其它功能性稀少糖及其衍生物的转化合成具有借鉴作用。
稀少糖(Rare Sugar)是自然界中存在但含量极少的一类单糖及其衍生物,具有独特生物学功能的低热量填充型甜昧剂。D-阿洛酮糖(D-psicose)是一种重要的稀少糖,已被FDA批准为安全GRAS食品,其甜度是蔗糖70%,但能量仅为蔗糖0.3%,可作为理想蔗糖替代品。阿洛酮糖为底物能转化获得阿洛糖醇(蒜糖醇,allitol)具有降血糖功能,可作为糖尿病辅助治疗剂。本课题建立多酶偶联转化合成稀少糖醇细胞模型,为开发稀少糖奠定基础。 . 1、稀少糖转化酶RDH和DPE关键基因的挖掘筛选:从自然环境中筛选获得能将D-阿洛酮糖转化为蒜糖醇的菌株G4A4,通过形态特征观察、生理生化实验以及16SrRNA分析,鉴定为产酸克雷伯氏菌(Klebsiella oxytoca G4A4),利用该菌转化D-阿洛酮糖为蒜糖醇的效率为87%。从该菌中克隆表达获得稀少糖醇转化的核糖醇脱氢酶(RDH);同时,基于生物信息技术进行基因挖掘,获得来源Ruminococcus sp.的D-阿洛酮糖 3-差向异构酶(RDPE),为建立全细胞转化稀少糖醇细胞模型奠定基础。. 2、稀少糖转化关键酶性质表征与催化机制研究:对DPE和RDH基因进行异源表达,获得重组蛋白并进行功能表征,研究酶底物特异性及酶动力学性质,确立了重组酶的最适反应条件。以来源C. cellulolyticum H10的CCDPE晶体结构为模板,结合同源建模及序列比较,对RDPE结构进行解析,通过RDPE底物结合及催化中心内的氨基酸残基多轮筛选,得到催化中心关键位点Y6及A109,定点突变和动力学参数研究,揭示RDPE与底物结合及活性中心催化机制,为DPE家族酶蛋白分子改造奠定了基础。. 3、多酶偶联转化阿洛酮糖和蒜糖醇细胞模型建立:利用来源嗜热枯草菌葡萄糖异构酶BGI和RDPE基因,构建了在65℃仍具有较好热稳定性的共表达体系。以果葡糖浆为底物,建立了一步法合成稀少糖的双酶偶联转化模型,平衡时葡萄糖、果糖和阿洛酮糖的摩尔比为3.0 : 2.7 : 1.0,阿洛酮糖占总糖浆的15%。将RDPE、RDH 、GLF导入大肠杆菌,结合辅酶再生构建了利用多酶偶联反应转化果糖合成蒜糖醇的全细胞催化体系,在最适反应条件下,蒜糖醇的产量达到48.62 g/L。该多酶偶联模型建立,为功能性稀少糖醇的生物合成提供了有效的方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
基于酶催化羟醛反应立体选择性构建谷氨酸棒杆菌模式细胞生物合成稀少糖
利用细胞膜选择性构建D-塔格糖高转化率的细胞模型
基于二醇脱水酶分子改造全细胞催化L-阿拉伯糖合成2-脱氧L-核糖研究
面向全细胞模型的多形式建模与仿真方法研究