Cognitive composite networks have achieved a great research interest due to their typical characteristics of end-to-end-efficiency, cognition, autonomy and convergence. It is of great importance to guarantee the resource demands of multiple kinds of traffic and enhance the quality of user experience by exploring end-to-end-efficiency-oriented resources supporting mechanisms and implementing autonomous resource management and control for multi-dimensional resources in cognitive composite networks. The project will design suitable (network) utility functions from utility theory to form the unified characterization system of the end-to-end-efficiency. Based on the IEEE 1900.4 framework, resources supporting mechanisms and algorithms are proposed to guarantee the end-to-end-efficiency, which can effectively deal with the problems of information exchange between the terminal and network side and there lacking of a unified representation end-to-end-efficiency. Furthermore, we build a unified cooperative game model taking both the efficiency and fairness into account with the aid of the extended cooperative game theory of the classical Nash bargaining game. Then, we propose a distributed algorithm for resource cooperative game, to achieve the best compromise of end-to-end performance and fairness. Finally, with the development trend of the heterogeneous network convergence, after high abstract to a variety of multi-dimensional network resources, we concise the scientific concept of "resource flows", and propose the resource flows-based resources supporting mechanisms and algorithms. The project will provide resources supporting mechanisms and algorithms, resource management and control techniques and theoretical fundamentals for the commercial use of cognitive composite networks and the heterogeneous networks convergence.
面向端到端效能的认知融合网络,以其认知性、自主性和融合性等特点引起广泛关注。探索面向端到端效能的资源保障机制,并实现多域认知资源的自主管控,可满足资源的多样需求、提高资源利用率和保障满意的用户体验。课题首先设计网络效用函数,形成认知融合网络的端到端效能表征体系;同时,提出面向端到端效能的认知效用双环资源保障机制并设计协议,实现资源信息完美交互。第二,统一构建兼顾效能和公平的资源合作博弈模型,并提出资源合作博弈的分布式算法,实现资源自主管控的端到端效能和公平性的最佳折中。最后,面向异构网络融合发展的大趋势,对认知融合网络中多域多维资源高度抽象,凝练出"资源流"的科学概念,提出基于资源流的自主资源保障机制和算法。本课题为认知融合网络的商用和异构网络的融合提供高效资源保障机制和理论支撑。
面向端到端效能的认知融合网络,以其认知性、自主性和融合性等特点引起广泛关注。探索面向端到端效能的资源保障机制,并实现多域认知资源的自主管控,可满足资源的多样需求、提高资源利用率和保障满意的用户体验。..第一、认知融合与分层架构:整理多种网络效用函数,形成完善的认知融合网络的端到端效能表征体系;完善面向端到端效能的认知效用双环资源保障机制设计,提出相应的资源信息交互协议,应用到具体的资源管理和控制技术的应用中。更重要的是在深刻理解双环结构的基础上,提出引入接入网侧管理实体的认知效用三环结构。进而,面向认知网络中的多用户“分层增益”的效用最大化,提出针对不同地理位置和感知能力多用户干扰场景的用户分层的博弈架构。通过挖掘“分层增益”,在保障主用户干扰约束条件下,实现多用户分布式的效用最大化。..第二、端到端效能与分布式合作博弈:认知融合网络需提供高效的端到端效能保证,在强调端到端效能的同时,兼顾考虑终端和网络公平性,达到资源博弈的社会最优。提出基于新型合作博弈的兼顾端到端效能和公平性统一资源合作博弈模型和相应的资源分配策略;提出基于经典纳什议价合作博弈的扩展理论,统一构建兼顾效能和公平性的资源合作博弈模型;提出资源合作博弈的分布式算法,实现低复杂度的端到端效能和公平性的最佳折中。..第三、多维资源与资源流:面向异构网络融合发展的大趋势,对认知融合网络中多域多维资源高度抽象,凝练出"资源流"的科学概念;并在此基础上,提出资源流的构建系统和方法,进一步提出基于资源流的自主资源保障机制和算法。课题创造性的提出“资源流”的概念,形成资源流的构建方法、系统和基于资源流的多资源自主按需管控方案。针对未来认知LTE系统和认知异构融合网络,提出多维资源的表征和管理方法和认知资源快的组合和分配。..本课题构建认知融合与分层的网络架构,面向端到端效能提出分布式合作博弈的方法,凝练资源流的概念实现多维资源的按需管控。本课题为认知融合网络的商用和异构网络的融合提供了高效资源保障机制和理论支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
跨社交网络用户对齐技术综述
黄河流域水资源利用时空演变特征及驱动要素
基于SSVEP 直接脑控机器人方向和速度研究
伴有轻度认知障碍的帕金森病~(18)F-FDG PET的统计参数图分析
长延时非可靠端到端深空网络自主密钥管理研究
自主端到端重构无线网络的体系结构及其关键技术
面向自适应学习的端到端人脸识别
基于资源标签交换的无线网络端到端能效管理策略研究