With the development of miniaturization and high performance of electronic components, the heat generation rate per unit volume increases sharply, and those traditional thermal control methods cannot meet the need from the thermal management. Especially in warships, the phenomenon is exacerbated due to the wicked thermophysical environment. This project aims at the highly efficient cooling for electronic components with high heat flux in warships and focuses on three scientific problems, i.e. the basic correlation between structure geometry and thermodynamic performance and basic theory of optimization design, the similarities and differences between entropy transfer and entransy transfer and their applicability, the synergy of heat transfer between heat source and heat sink and the integral optimization design method. The basic study for application about highly efficient cooling mechanisms and the optimization design for thermal control will be conducted by mathematical analysis, numerical calculation and experimental investigation by the intersection among some new thermology theories, such as the entropy generation minimization principle, the entransy dissipation extremum principle and the constructal theory of natural organization. Four parts are included: the simulation of thermophysical environment in warship, the heat dissipation mechanisms of heat source and its’ optimization design, the heat transfer mechanisms and the optimization design of microchannel heat sink and the composite heat sinks which are made of microchannel heat sink respectively with inside/outside ribs, porous media and thermoelectric module, the total heat transfer process and the integral optimization of the heat source with heat sink. The work will contribute to rich the theoretical connotation of thermal analysis and thermal management during the interdiscipline and develop the optimization design method for thermal control and some prototype designs, which has important influences on the wide application fields involved with electronic technology.
随着电子器件的微型化和高性能化发展,其单位体积的发热率激增,传统热控方式无法满足其热管理需求。舰艇内热物理环境严苛,易加剧该现象。本项目以舰艇环境高热流密度电子器件的高效冷却为应用背景,围绕其中的结构几何尺寸与热力学性能的基本关系及优化设计基础理论、熵传递与火积传递的异同及适用性、热源与热沉的传热协同及一体化设计优化方法三个科学问题,融合熵产生最小化原理、火积耗散极值原理和自然组织构形理论等热学新理论,通过数学解析、数值计算和实验验证,开展高效冷却机制及其热控优化设计的应用基础研究。包括:舰艇热物理环境模拟,热源的散热机理及优化设计,微通道热沉及其分别与内肋/外肋、多孔介质和热电模块结合的复合型热沉的传热机理及优化设计,热源与热沉的总传热过程及一体化设计优化。这有助于在学科融合中丰富热分析与热管理的理论内涵,发展电子器件热控优化设计方法与设计原型,对电子技术涉及的广阔应用领域具重要影响。
随着电子器件的微型化和高性能化发展,其单位体积的发热率激增,传统热控方式无法满足其热管理需求。舰艇内热物理环境严苛,易加剧该现象。本项目以舰艇环境高热流密度电子器件的高效冷却为应用背景,融合熵产生最小化原理、(火积)耗散极值原理和自然组织构形理论等热学新理论,开展高热流密度器件的高效冷却机制及其热控优化设计的应用基础研究。主要研究工作包括:通过初始温度、热流密度、热辐射、局部高热流热点等条件设置,模拟舰艇上电子器件散热的热物理环境和运行工况,开展了热源的散热机理及优化设计、微通道与复合热沉传热机理及优化设计、热源与热沉的总传热过程及一体化设计优化研究,并将研究思路和方法拓展应用于其他涉及流体流动和传热问题的结构最优化设计。发现了一系列研究对象的结构几何尺寸与系统性能的基本关系,并拓展了非几何结构参数与系统性能基本关系及优化设计的研究,给出了最优构形设计原型,丰富了构形设计这一新的结构优化设计理论,探明了研究条件下熵传递与(火积)传递的异同并讨论了熵产生最小化原理与(火积)耗散极值原理各自的适用性,以优化设计实例证明了热源与热沉传热具协同性并可通过一体化集成优化设计提高整体的传热性能。所做工作,丰富了器件级热分析与热管理的理论内涵,发展了电子器件热控优化设计方法与设计原型,为上述传热结构的优化和性能提升提供了科学依据和理论指导,对高热流密度器件热控技术所涉及的广泛应用领域具有重要的共性科学价值。.截至目前,项目已发表(含已录用)学术论文73篇,包括《中国科学》和《科学通报》中、英文版8篇,其他国内刊物10篇,国际学术刊物22篇,国内学术会议27篇,国际学术会议6篇,26篇被SCI和EI双摘,6篇被EI摘录,1篇为ESI高被引论文;243篇次被国内、外学者引用。1项发明专利申请进入实质性审查。项目负责人获军队级人才奖励1项,校级“十二五”优秀青年科技骨干表彰1项,入选校级“33511”人才工程计划和中青年学科带头人培养计划。项目已培养毕业博士1名、硕士4名,在读博士1名,在读硕士10名。1篇博士学位论文被评为校级优秀博士学位论文,3篇硕士学位论文被评为校级优秀硕士学位论文。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
黄河流域水资源利用时空演变特征及驱动要素
硬件木马:关键问题研究进展及新动向
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
空气冷却电子封装器件多物理场耦合热设计优化研究
高功率密度芯片微流道冷却的基础研究
高热流密度喷雾冷却发热面温度非均匀性及传热特性研究
极高热流密度表面热防护中的关键热传递问题研究