Due to the high failure rate of large scale wind turbines, the research project will mainly focus on the fault mechanism and theory and methods of diagnosis. In the dynamic analysis, the vibrational characteristics of large-scale wind turbines under multi-source dynamic loading are studied, and the force-energy flow law is investigated considering the influence of flexible supports. The dynamic stabilities of the wind turbine with uncertain parameters are analyzed utilizing the interval theory. The relations between the uncertain parameters and dynamic behaviors of the system are then pointed out. In the analysis of fault mechanism and diagnosis, the microscopic stress of the high contact interface and interfacial energy are studied for the distributions and transformations under complex external loading conditions. Based upon these, some typical micro faults, such as the micro-pitting in high-loaded gear teeth, are mainly discussed taking into account of the effect of interfacial energy. The condition monitoring and estimations for large-scale wind turbines under the non-continuous, non-stationary operating conditions are studied, and the methods of quantitative recognition and intelligent herald for early damages are presented. Four (even more) aspects of breakthrough will be achieve by this research project, including: the Hierarchical dynamic modeling of wind turbines under flexible supports, stability mechanism of the system with uncertain parameters, failure mechanism of key contact interface induced by interfacial energy, compressive sensing and intelligent prediction for the operating conditions. Research results are of great significance for improving the operational stability and protecting the high reliability and long life of service of large-scale wind turbines.
本项目针对大型风电装备故障率居高不下的现状,研究其故障机理及诊断的理论与方法。在动力学方面,研究大型风电装备在多源动载复合作用下的动力学特性,揭示柔性支承下大型风电装备的力流传递规律;研究含不确定参数的风电装备动力系统的稳定性,揭示不确定性参数与系统动态性能变化区间的映射规律。在失效机理和故障诊断方面,研究复杂外载作用下高副接触界面微观应力与界面能的分布及传递规律,探索界面能诱导的微点蚀产生机理;建立非连续非平稳运行条件下大型风电装备状态评估理论,提出早期损伤的定量识别和智能预示方法。本项目将在柔性支承下的风电装备分层次建模方法、不确定参数条件下的稳定机制、界面能诱导的关键接触界面失效机制和风电装备运行状态压缩感知与智能预测等方面取得重要突破。研究成果对于提高大型风电装备运行稳定性、保障其高可靠长寿命服役具有重要意义。
本项目针对大型风电装备故障率居高不下的现状,研究其故障机理及诊断的理论与方法。在动力学方面,讨论了风速时间序列的功率谱模型,研究了大型风电装备在多源动载复合作用下的动力学特性,分析了重力、基础运动对齿轮箱均载特性的影响机理;研究了含不确定参数的风电装备动力系统的稳定性,揭示了不确定性参数与系统动态性能变化区间的映射规律。在失效机理和故障诊断方面,研究了复杂外载作用下高副接触界面微观应力与界面能的分布及传递规律,探索了界面能诱导的微点蚀与微裂纹产生机理;建立了非连续非平稳运行条件下大型风电装备状态评估理论,提出早期损伤的定量识别和智能预示方法。本项目在柔性支承下的风电装备分层次建模方法、不确定参数条件下的稳定机制、界面能诱导的关键接触界面失效机制和风电装备运行状态压缩感知与智能预测等方面取得了一些成果。研究成果对于提高大型风电装备运行稳定性、保障其高可靠长寿命服役具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
非牛顿流体剪切稀化特性的分子动力学模拟
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
无机粒子填充硅橡胶基介电弹性体的研究进展
高吸附容量吡啶基聚合物刷脱除原油中金属的机理研究
超大型海上风电吊装装备故障诊断与预报的多尺度方法研究
复杂工况下大型风电装备传动系统失效机理研究
基于复杂网络的大型复杂装备故障智能诊断原理与方法研究
大型复杂装备早期故障诊断关键技术研究