Flexible sensors are deformable, light weight and portable, which are the key components in wearable electronics, implantable medical devices, electronic skins, artificial prosthetics and soft robots. Compared with the intrinsically flexible polymers, functional ceramics demonstrate superior electrical properties as well as operation stability. However, the intrinsic brittleness of ceramics greatly limits their applications in the field of flexible electronics. Our preliminary results show that by mechanical structural design of micro-nano structured material units and the overall device configuration, the traditionally rigid ceramics can be endowed with good mechanical flexibility. Therefore, in this project, we will fabricate nanostructured ceramic units with large deformability, construct 2D and 3D macroscopic lattices with such nanostructured ceramic units, and elucidate the relationship between the geometric topological structures and the overall mechanical behaviors of these nanostructured ceramic lattices. In addition, in order to realize wearable body motion and health monitoring, flexible tactile sensors will be assembled based on these nanostructured ceramic lattices, and their sensing performance will be improved by adjusting the microstructure of the ceramic functional layers. We expect that this project will offer new principles and methods for the design of flexible ceramic structures and devices, and boost their applications in flexible electronics, which are of important scientific significance and application values.
柔性传感器件具有可变形、质轻、便携等特点,是推动可穿戴电子、可植入医疗设备、电子皮肤、假体义肢以及软体机器人等领域快速发展的关键环节。相比于具有天然柔性的有机高分子材料,功能陶瓷材料具有明显优异的电学性能和器件稳定性。然而,陶瓷的本征硬脆特性极大限制了其在柔性电子领域的发展。前期研究结果表明,通过材料结构单元的微纳米化以及器件整体的力学结构设计,有望使传统脆性陶瓷材料具备良好的力学柔性。因此,本项目拟探索制备具有大形变能力的纳米陶瓷结构单元,研究纳米陶瓷单元的多维几何拓扑结构与宏观力学行为之间的关系,实现陶瓷材料的宏观力学柔性;研制开发基于纳米陶瓷多级结构的柔性压力传感器,通过优化功能层结构提升器件灵敏度,实现可穿戴人体运动及健康监测。该项目将针对传统脆性功能陶瓷材料应用于柔性电子领域亟需解决的力学理论和生产制备等关键科学问题提出新的思路和方法,具有重要的科学意义和应用价值。
研制开发基于无机半导体材料的新一代柔性压力传感器有望提高器件的响应性能和环境稳定性,是柔性电子技术未来重点发展的研究方向之一。该研究主要涉及以下两个关键科学问题:(1)陶瓷是传统脆性材料,如何使传统的脆性无机半导体材料获得与生物体兼容的力学柔性是目前研究的难点;(2)如何使高模量的陶瓷材料对微小压力产生高灵敏响应是研发高性能无机压力传感器的核心关键问题。鉴于此,本项目采用一种非常规纳米加工技术探索制备具有大形变能力的纳米陶瓷结构单元;通过材料单元及器件整体的力学结构设计,研究纳米陶瓷单元在多维度下的几何拓扑结构与宏观力学行为之间的关系,实现陶瓷材料的宏观力学柔性;研制开发基于纳米陶瓷多维结构的柔性压力传感器,通过优化功能层结构提升器件灵敏度,实现可穿戴人体运动及健康监测。该项目的实施将从理论和实际应用两方面着手,针对传统脆性功能陶瓷材料应用于柔性电子领域亟需解决的力学理论和生产制备等关键科学问题提出新的思路和方法,实现了传统陶瓷材料在高性能、耐高温、可穿戴柔性传感领域的应用,具有重要的科学意义和应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
资源型地区产业结构调整对水资源利用效率影响的实证分析—来自中国10个资源型省份的经验证据
多级耦合结构半导体纳米纤维的可控制备及器件基础
多级结构微纳米螺旋纤维的制备及其力学机理研究
复合电纺法制备多级结构微纳米纤维及其力学性质研究
P3HB4HB基弹性导电纤维的制备及在柔性力学传感方面的应用研究