Autonomous underwater vehicles (AUVs) play an important role in underwater target seeking, tracking and detection. Now more attention should be paid to isomorphic switching control in variable-speed detection and spatial robust control in the presence of actuator dynamics and input saturation. In this project, we first divide the entire speed profile into the low, medium and high-speed intervals based on maneuvering tests and actuator assessment. And then a practical and isomorphic path following control architecture is proposed to avoid potential multi-interval switching such that the stability of the AUV control system in the variable-speed tracking can be guaranteed. Second, a novel spatial line-of-sight guidance law is designed to accurately show the nonlinear relationship between the position and the attitude angles. Subsequently, an adaptive fuzzy controller is resorted to reject system uncertainties, which guarantees the robust performance in three-dimensional variable-speed tracking. Third, an adaptive compensator is inserted in the above controller to make the command smooth and bounded and meanwhile guarantee the system stability in the presence of actuator dynamics and input saturation. Hence, the research production can be directly applied to the actual underwater vehicle system. In this sense, AUVs equipped with the designed controller can adaptively perform accurate detection for underwater targets.
自治水下机器人AUV可实现水下目标搜寻、跟踪与探测,然而变速探测需求引起的航迹跟踪同构切换技术以及驱动延滞和输入饱和双重约束下的空间鲁棒控制技术仍有待进一步深入研究。本项目拟基于操纵预报和推进评估定量分析全航速域内低、中、高航速带,提出符合于工程实践、归一化结构的航迹跟踪控制律,避免变速行为引起的控制算法“多带”切换,增强AUV变速跟踪行为的稳定性;通过设计新型空间视线制导律,精确解耦空间位置和可控姿态角之间的非线性映射,并“级联”自适应模糊逼近技术设计不依赖于内外模型参数的动力学控制律,增强三维空间内AUV精确变速跟踪行为的鲁棒性;基于自适应补偿技术设计有界、光滑的指令控制律,克服艇载驱动执行器固有的“延滞”和“截断”耦合特性,提升AUV空间航迹跟踪控制律的移植性。本项目研究成果有望提高AUV等海洋平台对水下目标的自适应精细探测能力。
本项目以AUV为主要研究对象,考虑了艇载执行器的驱动特性,重点围绕AUV操纵、制导和控制等核心关键技术开展了系统的理论和大量的试验研究工作,研究总结如下:定量评估了一款AUV的低、中、高速航行带,为AUV节能变速控制提供关键数据支撑;设计了改进型六自由度空间视线制导律,有利于提高AUV航迹跟踪控制的精准性;推导出自适应鲁棒有界跟踪控制律,水池试验证实了多重约束下其优越的控制性能;探索了AUV集成水动力学高精度辨识器,削弱了AUV系统多水动力学参数耦合及不确定等约束;此外,协助海洋技术团队在新型混合式水下航行器动力学建模、自适应跟踪控制与多模式采样等方面开展了探索。项目按计划开展,取得了一定的研究成果。项目研究小组在Ocean Engineering,Applied Ocean Research,International Journal of Fuzzy Systems,Indian Journal of Geo-Marine Sciences,中国造船,中国舰船研究,舰船科学技术,33th Chinese Control and Decision Conference (CCDC 2021)等国内外期刊和会议上发表/录用受本基金资助的学术论文13篇,其中SCI检索期刊论文9篇,EI检索期刊和会议论文2篇,中文核心期刊论文2篇。在水下航行器制导、控制与技术应用等方向申请/授权国家专利5项,其中授权2项。本项目进展从理论和实践两方面进一步推进了AUV相关关键技术的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
敏感性水利工程社会稳定风险演化SD模型
自流式空气除尘系统管道中过饱和度分布特征
输入饱和约束下AUV全驱动/欠驱动位形切换跟踪控制
面向复杂流场的欠驱动AUV路径跟踪控制研究
复杂空间约束下目标运动建模及跟踪方法研究
剩余浮力影响下AUV地形跟踪方法研究