A macro-micro manipulator is a key device for precision manufacturing equipment to achieve long-travel and high-precision positioning. As there exist serious coupling effects between the macro and micro manipulators, especially the frequent start-stop motions of the macro manipulator will adversely affect the positioning accuracy and settling time of the micro manipulator, conventional macro-micro manipulators cannot meet the stringent industrial demand for achieving nanoscale positioning accuracy in several hundred millimetre travel range rapidly. The subject of this research project is a macro-micro manipulator which consists of a 3-DOF micro manipulator with several millimeter motion range and nanoscale positioning accuracy and a 2-DOF macro manipulator with several hundred millimeter stroke. The critical research issues to be investigated include: configuration synthesis for a high-performance macro-micro manipulator and design optimization for direct-drive linear actuators with high force densities and low force ripples, so as to achieve lightweight and precision system design; kinematics and dynamics analysis methods for the macro-micro system, in which the macro manipulator is an x-y stage driven by direct-drive liner motors and the micro-manipulator is a flexure-based parallel manipulator driven by voice-coil motors, so as to discover the mechanics of the micro disturbances and macro-micro coupling effects; the coordinating control schemes for “moving micro system first” and decoupled macro-micro motions, and the dual-frequency dual-closed-loop control method based on the position measurements in both task and joint spaces; and vibration suppression methods based on an intensive study of the vibration mechanism. It is believed that the successful implementation of this project will become a valuable asset for updating and upgrading the precision manufacturing industry of Zhejiang Province and China as well. This project could also improve China’s research and development levels in the area of high-precision manipulators, and in turn enhance the development of related disciplines.
宏微操作机器人是精密制造装备实现大行程高精度定位的关键装置,但因宏微系统耦合,尤其是宏系统频繁启停会严重影响微系统的精度和稳定时间,难于满足精密制造装备在几百毫米工作范围内快速实现纳米级定位精度的苛刻要求。本项目以行程几毫米、精度达到纳米级的三自由度微定位系统和行程几百毫米的二自由度宏运动系统所组成的宏微操作机器人为导向目标,重点研究高速高效运动机构及大推力密度/低推力波动直驱电机的优化设计方法,实现系统的轻量化、精密化设计;建立宏微系统及柔性并联机构的运动学、动力学分析方法,揭示系统的微扰动作用机制及宏微耦合效应的规律;探讨先微后宏、宏微解耦的协调控制策略,建立基于任务和关节空间位置检测的双环双频控制方法;阐明宏微系统的振动机理,提出振动抑制方法。本项目的实施不仅对浙江和我国精密制造业的升级换代具有重要价值和意义,也对提高我国高精度操作机器人研究水平,促进相关学科发展具有积极的推动作用。
宏微操作机器人是精密制造装备实现大行程和高精度定位的关键装置,然而宏微系统之间存在耦合,尤其是宏平台频繁起停严重影响了微平台的定位精度和稳定时间,难以满足精密制造装备在几百毫米工作范围内快速实现微纳米级定位精度的苛刻要求。本项目以实现大行程高精度定位为目标,重点研究了高刚度长行程棋盘式宏动平台的构型设计、动力学建模与控制;基于柔性支撑和高推力密度音圈电机的单自由度微纳定位装置设计方法;大行程平面三自由度柔顺并联机构的设计、运动学和动力学建模;基于主动涡流阻尼的宏平台振动抑制和基于被动阻尼和柔性铰链的微平台振动抑制等关键问题,完成了宏微平台的系统集成,通过建立宏微耦合动力学模型分析了宏微耦合作用机理,提出了宏微电机控制器参数的同步优化方法,提高了系统的鲁棒性。通过对步进扫描轨迹分配的研究,提出了以微带宏的宏微协调控制策略,实现了大行程高精度定位。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
敏感性水利工程社会稳定风险演化SD模型
基于图卷积网络的归纳式微博谣言检测新方法
基于频域误差补偿策略的微操作机器人快速精密控制研究
基于柔顺机构的智能微操作机器人动力学与控制研究
面向操作者手眼协调特性的微操作机器人辅助优化与控制研究
多臂空间机器人协调操作的运动学动力学与控制