Nanotechnology is one of the most popular topics in scientific research, and gets growing applications in many fields. One core issue of the nanotechnology is the manufacturing techniques with nano-precision. Nanofabrication based on the heated atomic force microscope (AFM) tip is a promising method that has been developed in recent years. We developed an approach to control the tip-sample gap accurately, and succeeded in nanowritting on polymer films with a high resolution of tens of nanometers in width..Based on this work, we propose a nanofabrication method that employs an AFM tip heated by laser to sinter the metallic nanoparticles to get nanostructures. This method will be applied to prepare nanodevices. The inkjet printing technology will be employed to print the ink doped with metallic nanoparticles on substrates. Then the printed nanoparticles will be heated by a hot AFM tip. We postulate sintering will occur among the heated nanoparticles when the temperature is above a threshold, which will result in nanostructures with specific physics properties. These hypotheses will be tested by different inspection methods,for example AFM imaging and SEM imaging. The effects of ink viscosity, tip temperature, heating duration, nanoparticle and substrate properties will be investigated. These studies will make it possible to control the sintering region accurately with a precision of 40nm and produce micro-nano structures with specific properties in electronics and optics. .This project will develop a new method for nanofabrication that can be applied in integrated circuit and integrated optoelectronics and other fields where nanostructures are required.
纳米技术是当前科学研究与开发的热点,而纳米加工是核心基础。使用原子力热探针(简称热探针)进行纳米加工是一项具有良好应用前景的新技术。项目申请人开发了一种精确控制热探针与材料表面距离的技术,并在有机材料表面上通过热刻蚀作用获得了数十纳米线宽的精细加工。本项目拟在此工作的基础上,研究应用热探针烧结金属纳米粒子,制备纳米结构。项目使用喷墨印制技术将掺杂金属纳米粒子的油墨印制在基底材料表面,然后利用热探针对喷涂区内的金属纳米粒子进行局部加热。当粒子温度高于其烧结温度时将发生烧结现象,在探针的加热区内形成具有一定物理特性的致密体。本项目期望通过研究基底材料表面性质、纳米粒子性质、油墨粘滞性和烧结温度与烧结时间等因素对烧结的影响,精确控制热探针引起的烧结区域,并在此基础上制备具有特定光电功能线宽约40 nm的微纳结构。本项目的实施可为集成电路和集成光电子等领域的研究与开发提供一种新的纳米加工方法。
进入21世纪以来,纳米科技在电子学、光子学和生物学等领域得到了越来越多的应用,是当前研究和开发的重点领域之一。纳米科技的一个重要领域是设计制备具有特异性能的微纳结构和器件。本项目研究了原子力热探针烧结金属油墨制备金属微纳结构的可行性,探讨了关键实验条件对烧结的影响。具体研究成果包括:(1)建立了激光加热原子力探针的实验系统,实现了对针尖温度的在线测量和控制;(2)研究了热探针精细烧结金属油墨的实验条件。初步明确了油墨涂层厚度、探针温度和探针扫描速度等关键参数对烧结的影响。应用热探针烧结技术,制备了线宽约40纳米的微纳结构;(3)设计了双层万字型互补金属微纳结构,模拟研究了该结构的圆二向色效应;(4)应用烧结技术,制备了基于光纤的‘导电-导光’生物电极。本项目开发的热探针烧结技术为微纳光子学和集成光电子学等领域提供了一种新的加工方法。结合本项目,共发表论文8篇,其中SCI或EI收录8篇,国家发明专利2项,日本实用新型专利1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
基于图卷积网络的归纳式微博谣言检测新方法
选区激光烧结制备可控排布的微孔结构金属材料
基于纳米热探针技术的摩擦、磨损微观机理的研究
碳纳米管探针的制备及其结构优化的关键技术研究
抗烧结负载型金属纳米催化剂的制备机理研究和催化性能