基于压缩感知的核磁共振成像问题驱动的应用数学研究

基本信息
批准号:11571325
项目类别:面上项目
资助金额:55.00
负责人:朱永贵
学科分类:
依托单位:中国传媒大学
批准年份:2015
结题年份:2019
起止时间:2016-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:常谦顺,王武,朱先进,张彬,于欣妍,刘晓曼,李浩,牛秀秀
关键词:
稀疏表示非线性重建KSpace抽样核磁共振成像压缩感知
结项摘要

This project is based on National Program for Medium- and Long-Term Scientific and Technological Development and 12th Five-Year Plan for the Development of the National Natural Science Fund of China. It is a research on the mathematical problems from practical applications, and also a basic research on the key Compressive Sensing MRI (CS-MRI)-driven problems for high-performance computing and data processing. The contents of this project are the three core issues in compressive sensing MRI, i.e. the sparse representation for MR images,the K-Space sampling optimal design and nonlinear reconstruction of MR images. The research of these issues is used to improve the speed of magnetic resonance imaging. The object of this project is to solve the challenging problems in CS-MRI, and to promote the application and development of applied mathematics in the field of medical imaging. The first innovative point of this project is to present adaptive dictionary sparse and global regularization sparse representation methods in MR images transforms. The second innovative point is to design feasible K-Space sampling modes in order to exploit the performance of MR equipment. The third innovative point is to establish fast, efficient, stable and general nonlinear reconstruction methods of MR images. The fourth innovative point is to provide the more total study about applied mathematics driven by CS-MRI problems.

本项目是依据《国家中长期科学与技术发展规划纲要》和国家自然科学基金“十二五”发展规划,从实际应用中凝练出的应用数学问题研究,是基于压缩感知的核磁共振成像(Compressive Sensing Magnetic Resonance Imaging,CS-MRI)问题驱动的高性能计算和数据处理的关键问题研究。具体的研究内容是面向核磁共振成像时间长的实际问题,就基于压缩感知的核磁共振成像中的三个核心问题:MR图像的稀疏表示、K-Space抽样最优设计和MR图像的非线性重建进行应用数学研究,解决核磁共振成像时间慢这一挑战性问题,推动应用数学在医学成像领域中的应用和发展。本项目的创新之处在于给出MR图像的自适应字典稀疏和全局正则化稀疏表示;设计能够发挥MR硬件效能的实际可行的K-Space抽样模式;构造快速、有效、稳定和普适的MR图像非线性重建方法;给出较全面的CS-MRI问题驱动的应用数学研究。

项目摘要

给出了改进的L1/L2联合正则化图像复原模型及其求解的数值方法,证明了求解方法的收敛性。发展了新的图像复原的非线性扩散模型,证明了该模型弱解的存在性,给出了求解模型的加性分裂方法。研究出用于图像去噪的增广拉格朗日乘子方法与对称Red-Black 高斯-赛德尔方法的组合方法和相应的数学模型及其数值求解方法。研究出一种基于Tikhonov正则化的图像盲复原方法。系统整理了傅里叶变换的图像复原算法、基于共轭梯度法的图像复原、基于全变差的图像正则化复原算法、Bregman算法、Bregman分裂算法、基于偏微分方程的图像复原算法、变指数函数空间的图像复原算法、图像去雾和基于深度神经网络的单视觉实时避障算法等系列研究成果。研究出一种能够从再压缩图像中对迹特征进行重采样的卷积神经网络(Convolutional Neural Networks, CNN)学习方法,这一学习方法可用于图像篡改的辨识。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

DOI:10.1080/15287394.2018.1502561
发表时间:2018
2

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
3

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像

DOI:10.11999/JEIT150995
发表时间:2016
4

Vibration suppression of drilling tool system during deep-hole drilling process using independence mode space control

Vibration suppression of drilling tool system during deep-hole drilling process using independence mode space control

DOI:10.1016/j.ijmachtools.2020.103525
发表时间:2020
5

Heat stress and outdoor activities in open spaces of public housing estates in Hong Kong: A perspective of the elderly community

Heat stress and outdoor activities in open spaces of public housing estates in Hong Kong: A perspective of the elderly community

DOI:10.1177/1420326X20950448
发表时间:2020

朱永贵的其他基金

相似国自然基金

1

非线性压缩感知问题研究

批准号:11501375
批准年份:2015
负责人:王会敏
学科分类:A0205
资助金额:18.00
项目类别:青年科学基金项目
2

医学影像学中问题驱动的若干应用数学问题

批准号:11326033
批准年份:2013
负责人:孔德兴
学科分类:A0604
资助金额:20.00
项目类别:数学天元基金项目
3

基于压缩感知的特定信号盲源提取问题研究

批准号:61371182
批准年份:2013
负责人:王刚
学科分类:F0113
资助金额:80.00
项目类别:面上项目
4

对称锥互补问题的算法研究及其在压缩感知中的应用

批准号:11426168
批准年份:2014
负责人:李远敏
学科分类:A0405
资助金额:3.00
项目类别:数学天元基金项目