Synthesis of novel materials with wide solar light absorption is basis of achieving efficient hydrogen production by artificial photosynthesis, and the topic has been a cutting edge frontier in the field of solar-to-chemical conversion. The applicant has been devoted to overall water splitting using photocatalysts with wide visible light utilization, and has developed some novel materials with absorption edge of beyond 550 nm. Using the as-developed materials as the H2-evolving side, the applicant has successfully fabricated Z-scheme overall water splitting system with apparent quantum efficiency of 6.8% @ 420nm, the current record value. Based on our previous research progress, this project is to develop some novel photocatalysts with absorption edge of beyond 600 nm and high carrier mobility for promising overall water splitting. On one hand, some known d0 metal-containing perovskite oxides will be doped by heteroatoms with an emphasis on precise control to their space distribution. On the other hand, synthesis of new inorganic-organic hybrid materials will be investigated by combining therotical simulation with high throughput experiments. Moreover, the surface and interface structures of some developed promising materials will be modified by nanostructure assemblying to construct over three real overall water splitting systems under visible light irradiation. Finally, it is expected to obtain a general methodology of adjusting energy band structure and carrier mobility by heteroatom doping, to deeply insight correlation between structures and performance of photocatalysts, and to advance science of artificial photosynthesis for hydrogen production from water.
宽光谱捕光材料的合成是实现高效太阳能人工光合制氢的基础,始终处于该研究领域的前沿。申请人长期从事可见光完全分解水制氢研究,通过氮原子掺杂开发了多个吸收带边至550 nm以上的新材料,并取得了目前"Z"机制粉末完全分解水制氢世界最高量子效率(6.8%@420 nm)。基于前期研究基础,本项目拟一方面以钙钛矿结构类d0金属基已知氧化物为研究对象,系统探讨杂原子引入的空间分布精准控制,实现兼具宽光谱响应和高载流子迁移率的新材料开发,另一方面通过理论模拟与高通量组合化学相结合制备无机-有机杂化类光催化新结构材料;以期合成一批吸收带边至600 nm以上、具有完全分解水制氢前景的目标材料,并通过表界面修饰和纳米粒子组装等方法协同构筑出3个以上宽光谱完全分解水制氢实际体系,发展杂原子引入调变能带结构和载流子迁移率等属性的一般性方法,促进材料结构与性能的“构效关系”认识,推动太阳能人工光合制氢科学发展。
光催化分解水制氢是实现太阳能至化学能转化的重要方式之一。新型宽光谱捕光材料的开发始终处于该领域的前沿。本项目的研究重点为开发兼具宽光谱响应和高载流子迁移率的新材料,并通过表界面修饰和纳米粒子组装等方法构筑全分解水体系。项目实施以来取得了如下成果:1)设计合成了Ba(Mg1/3Ta2/3)O3−xNy,Cd-MOFs,Bi-MOFs,LiCuTa3O9,SmTiO2N,Sn2TiNbO6F以及掺杂的TiO2、C3N4等系列宽光谱捕光新材料,实现可见光捕光范围拓展至650 nm左右;2)发展了金属离子掺杂、双助催化剂修饰以及晶面选择性外延生长等策略,大幅提升了Ta3N5、PbTiO3等光催化剂的电荷分离以及光催化分解水制氢制氧半反应性能;3)基于缺陷密度控制合成、异质结构筑以及表界面修饰等策略构筑了多个可见光Z机制全分解水制氢体系;其中利用BiVO4晶面间电荷分离和双助催化剂策略等协同实现Z机制可见光催化全分解水制氢量子效率达到国际领先(12.3% at 420 nm)。研究结果具有原创性并为实现太阳能到氢能的高效转化存储奠定了基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
新型窄带隙、宽光谱光伏响应聚合物材料的设计、合成及其光探测性能研究
宽光谱吸收新型有机电子传输材料的合成与性能研究
水相稳定宽光谱捕光金属-有机框架的制备及光解水制氢研究
用于宽光谱光伏电池的能带梯度材料的研究