With the development of portable electronic devices, one of the demands is to explore the flexible energy storage devices with high energy density and good cycling stability, such as supercapacitors. The key part to realize this kind of flexible energy storage devices is the right choosing and rational designing of the electrodes. Heterostucture such as core shell structure can cause synergetic effects and make advantages of different components. Currently, few study on metal based core shell structure electrode materials for flexible supercapacitors has been reported. Based on these issues, this project is aimed to combine the merits of Ag nanowires with super high conductivity and the transitional metal oxide with high persudocapacitance, designing a Ag@NiO core shell structure, in the hope of realizing a flexible supercapacitor with higher energy density and flexibility. By using in situ test technology, we aim to explore the relation between the electrochemical properties of the electrodes and their conductivity and structures, correlate the energy storage properties, the mechanical properties and the cycling stability of the devices to the structure evolution of the electrode materials. This project is scientifically important for the development of flexible energy storage electrodes, which extends the room for the electrodes candidates used in flexible supercapacitors, and also help inspire a new way to develop the novel flexible electrodes.
随着便携式电子器件的快速发展,开发具有高能量密度和高循环稳定性的薄型、柔性储能器件,如超级电容器等,已成为新能源领域亟待解决的问题之一。实现高性能柔性储能器件的关键在于对电极材料进行合理地选择与结构设计。异质结构(如核壳结构)能产生协同效应,发挥不同组分材料各自的优势,而目前金属基核壳结构电极材料用作柔性超级电容器电极的研究还较少。基于此问题,本项目拟结合高电导率的Ag纳米线和高赝电容性能的过渡金属氧化物,设计一种Ag@NiO核壳纳米线结构,有望实现高能量密度和高机械性能的柔性超级电容器。拟通过原位表征技术,探索电极电化学性能与电极材料本征导电性以及结构的关系,揭示器件储能特性、机械性能以及循环稳定性与电极材料结构优劣之间的内在规律。本项目的实施对于高性能柔性储能电极材料的发展,拓宽柔性超级电容器电极材料的选择空间具有重要的科学意义,也为新型柔性电极材料的开发提供一种新的研究思路。
开发透明柔性电子设备其中最重要的一个方向是开发高能效同时兼具透明、柔性等特性的供能器件,如透明柔性超级电容器。目前用于透明柔性超级电容器的电极主要为黑色的碳材料,这限制了柔性超级电容器向透明、高电容方向的发展。针对这一问题,本项目结合高电导率的Ag纳米线和高赝电容性能的过渡金属氧化物,合成了一种Ag@NiO核壳纳米线结构,有望实现高能量密度和高机械性能的柔性超级电容器。本项目成功制备出Ag@NiO核壳纳米线,探索了Ni前驱体的浓度、反应温度与时间、反应媒介对Ag@NiO核壳纳米线生成情况:如NiO壳层附着情况以及纳米线在溶液中的分散情况等,得到最佳的合成条件。研究了Ag@NiO的电化学性能,研究表明Ag@NiO纳米线显示了一定的超电容特性,当电流密度为0.29A/g时,比电容为105.13F/g。另外发现,Ag@NiO纳米线对不同浓度的葡萄糖溶液有不同程度的响应。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
当归补血汤促进异体移植的肌卫星细胞存活
新疆软紫草提取物对HepG2细胞凋亡的影响及其抗小鼠原位肝癌的作用
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
聚酰胺酸盐薄膜的亚胺化历程研究
柔性超级电容器电极的可控合成及电化学性能
ZnO/MgO核壳纳米线的可控合成及高性能紫外光电探测器研究
多孔MOF@MXene复合电极材料的设计、合成及其超电容性能
柔性SiC纳米阵列电极材料的制备及其超电容特性研究