The performance of the flywheel energy storage were promoted greatly with the application of advanced composites, magnetic bearings, high speed motor and power electronics. The merits of FES include long life time, high power, high efficiency and green. However, the shortcomings of FES are small scale in energy for single unit and high no-load energy loss. In general, a flywheel energy storage system is composed of a flywheel, magnetic or mechanical bearings that support the flywheel, a motor-generator to drive the flywheel and inter-convert the mechanical energy and electrical energy. The main energy loss are mmechanical loss, electrical loss and windage loss. In high speed motor, the iron loss is the largest loss..In this item, we will design a high speed brushless DC generator-motor, which is controlled by a digital controller using DSP ADSP21992. The finite element analysis is used to investigate the influence of design parameters on the natural frequencies. In order to lift rotor natural frequency beyond the operating speed range, the shaft length, the shaft diameter and the position of bearing should be selected carefully. Iron loss is important in the high speed permanent brushless DC motor and conventional method using of empirical scaling factor is not accurate. The accurate iron loss model for the machine considering the rotating magnetic field is propelled, which uses the alternating iron loss coefficients and takes into account the affection of the rotating magnetic. Thermal analysis is used to predict the temperature rises of the components in order to provide enough margins for safety operation. Thermal analysis has become an important step in design and analysis of electric machines. Lumped parameter thermal model is a widely used analysis method. In this item, the thermal model using thermal network is described, using results from loss calculation. Along with the speed rising, efficiency become more important, a optimal design model of the permanent brushless DC motor will be established. It optimizes the efficiency of motor successfully and gives an optimal example.
现代飞轮储能电源发展迅速。但空载损耗制约了其进一步发展。其损耗主要有机械损耗、电损耗以及风阻损耗。其中电损耗在高速系统尤以铁耗为大。本课题将针对高速发电/电动机系统的电损耗,结合课题组前期工作基础,拟从以下几方面着手研究降低飞轮储能系统的电损耗方法。(1)采用软磁复合材料、爪极结构设计高速电机本体;采用DSP ADSP21992建立数字化的控制系统。(2)从铁磁材料的角度,通过实验得出不同频率下的损耗数据。结合电磁场的有限元分析,较精确计算出高速电机内铁耗,建立铁耗模型。(3)损耗导致温升,直接影响电机寿命和运行可靠性,采用热网络法和磁热耦合有限元法对比分析电机内温度分布(4)在损耗、温升计算基础上,用具有自适应交叉率和自适应变异率的遗传算法建立优化设计的数学模型,对高速电机以效率为优化目标进行优化设计。研究成果可提升飞轮储能系统效率,拓展其应用空间,具有重要理论和实践意义。
现代飞轮储能电源发展迅速。但空载损耗制约了其进一步发展。其损耗主要有机械损耗、电损耗以及风阻损耗。其中电损耗在高速系统尤以铁耗为大。本课题针对高速发电/电动机系统的电损耗,结合课题组前期工作基础,从以下几方面着手研究降低飞轮储能系统的电损耗方法。(1)设计高速电机本体;建立控制系统。(2)从铁磁材料的角度,通过实验得出不同频率下的损耗数据。结合电磁场的有限元分析,较精确计算出高速电机内铁耗,建立铁耗模型。(3)损耗导致温升,直接影响电机寿命和运行可靠性,采用热网络法和磁热耦合有限元法对比分析电机内温度分布(4)在损耗、温升计算基础上,用具有自适应交叉率和自适应变异率的遗传算法建立优化设计的数学模型,对高速电机以效率为优化目标进行优化设计。研究成果可提升飞轮储能系统效率,拓展其应用空间,具有重要理论和实践意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
白介素-6通过NF-κB介导MYC基因在HIV-/HHV8-Castleman病浆细胞恶性转化的机制
航天器飞轮储能用高速永磁电机转子动态温度场研究
飞轮储能用全距绕组双凸极电动/发电机
高温超导磁悬浮姿控储能飞轮高速转子的稳定特性研究
飞轮储能系统高速轴系的超声波悬浮支撑技术研究