Graphene is the excellent reinforcement of magnesium based composite due to its fantastic mechanical properties. The key point is how to uniform disperse the high content single-/few-layered graphene with good interfacial bonding in the matrix. A homogeneous distribution of graphene in the matrix has been successfully obtained through in-situ reduction of graphene oxide (RGO) by sintering process after the graphene oxide (GO) was uniformly dispersed in the Mg matrix [GO+Mg→RGO+MgO]. Because GO can be easily exfoliated into the single-/few-layered nanosheets by ultrasonication, which is beneficial to the final dispersion of graphene. In addition, the in-situ RGO reveals a strong interfacial bonding with the surrounding matrix by the medium of MgO acting as the potent heterogeneous nucleation sites for α-Mg phase because of the interface of MgO/α-Mg is semi-coherent with small crystallographic misfit. This novel idea could realize the combination of effective dispersion of graphene possess good interfacial bonding and grain refinement of the α-Mg matrix, and then improving the mechanical properties of Mg-based composite..This project will study the relationships among interface, microstructure, mechanical properties and fracture feature of Mg-based composite with graphene. The interface behavior of this composite will be focused by analysis the structure, bonding strength and failure mechanism of interfaces among RGO/MgO/α-Mg. The strengthening mechanism of graphene-Mg nanocomposite with will be studied. The theoretical model of the Mg-based composite will be constructed. This project has significant meaning for the development and design theory of Mg-based composite with high performance and promotes its application..
石墨烯具有优异的力学性能,是镁基复合材料优良的增强体。如何在镁基体中添加单层、少层含量高且分散均匀的石墨烯并提高界面结合,是镁基复合材料研究的关键科学问题。利用氧化石墨烯(GO)含有丰富的含氧官能团而容易超声剥离、分散形成高含量单层、少层GO的特性,在镁基体中形成均匀分散,通过原位还原反应GO+Mg→RGO(石墨烯)+MgO(界面产物),巧妙地实现了高含量单层、少层石墨烯的有效分散和良好界面结合(半共格界面),同时获得晶粒细化(MgO异质形核),进而改善复合材料的综合力学性能。.本项目研究石墨烯/镁基复合材料的界面、微结构、力学性能及断裂特征的相互关系;研究石墨烯/氧化镁/镁基体间的界面结构、界面结合强度及界面失效机制;研究石墨烯/镁基复合材料的强韧化机制并建立关系模型。本项目研究成功,将推动高性能镁基复合材料设计理论的发展,开拓一条制备镁基复合材料的新途径,具有重要的学术意义和应用前景。
石墨烯具有优异的力学性能,是镁基复合材料优良的增强体。如何在镁基体中添加单层、少层含量高且分散均匀的石墨烯并提高界面结合,是镁基复合材料研究的关键科学问题。本项目利用氧化石墨烯(GO)优异的分散特性,在镁基体中引入单层、少层含量高且分散均匀的GO,通过原位还原反应GO+Mg→RGO(还原石墨烯)+MgO(界面产物),巧妙地实现了高含量单层、少层石墨烯在镁基体中的均匀分散。TEM、SEM、力学性能测试等表征分析发现:石墨烯在镁基体中分散均匀,界面产物MgO与镁基体形成了半共格界面结合,有效提高了石墨烯与镁基体的界面结合质量;同时细化了镁基体组织(MgO异质形核),复合材料的综合力学性能提高显著。本项目阐明了石墨烯/氧化镁/镁基体之间的界面结构、界面结合强度及界面失效机制,揭示了石墨烯/镁基复合材料的强韧化机制,推动了高性能镁基复合材料设计理论的发展,具有重要的学术意义和应用前景。.项目研究成果发表论文14篇,其中SCI论文9篇(含高引论文Carbon,127 (2018),177-186),EI论文2篇,中文核心2篇;授权国家发明专利3项;获中国科技产业化促进协会科技创新二等奖1项,获江西省自然科学三等奖1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
三级硅基填料的构筑及其对牙科复合树脂性能的影响
结直肠癌肝转移患者预后影响
2A66铝锂合金板材各向异性研究
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
CNTs/SiCp混杂增强镁基复合材料的界面行为及强韧化机制研究
原位还原石墨烯/榴石陶瓷复合材料的生成机制和强韧化机理
石墨烯纳米颗粒增强镁基复合材料界面结构和强化机理研究
Mo微合金化与原位石墨烯协同强韧镍基复合材料的界面特性及相关力学行为