在偏微分方程中,凸性长期以来都是人们感兴趣的问题。它不仅具有几何直观,而且在自由边界扩散方程等问题的存在性和正则性中往往也是起重要的作用。常秩定理是处理关于凸性问题的一个精妙理论,它在偏微分方程解的几何性质及其微分几何中的应用有着深刻意义。. 本研究项目主要想针对一类完全非线性的椭圆方程找到适当的结构条件,从而使得相应的解具有某种形式的凸性,特别是解的水平集的凸性。关键的一个思想是要建立关于刻画凸性的某种量(比如解的Hessian矩阵)的常秩定理。在凸性的应用上,我们通过对一类完全非线性算子的凸性研究,得到关于这类算子的统一的几何特征,这是一个十分有趣的现象。同时我们还可以证明关于算子第一特征值的 Brunn-Minkowski 不等式。
{{i.achievement_title}}
数据更新时间:2023-05-31
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选
针对弱边缘信息的左心室图像分割算法
复杂系统科学研究进展
基于MCPF算法的列车组合定位应用研究
偏微分方程解的凸性及其几何应用
偏微分方程解的凸性研究和金融应用
椭圆偏微分方程解的凸性
非线性偏微分方程解的微观凸性及其几何应用