Algebriac-geometric codes are very important in the theory of error-correcting codes because of its theretical and potential application value. We studied the error-correcting capability and deconding of algebraic-geometric codes in this project, including the following topics: improvement of error-correcting capability of Hermitian codes, the minimum distances of Schubert codes and the application of algebraic-geometric codes in the construction of quantum error-correcting codes. We constructed a sequence of asymptotically good quantum error-correcting codes and improved the ALT bound.
本课题研究代数几何码已有的译码法,尤其是冯拉欧译码法,对具好的性质的代数几何码,如欧梅特码,嘎西--斯梯奇努兹曲线上的渐进好码的译码能力,如译码法的纠错个数的严格确定,对超冯拉欧界的错型的处理能力等,也寻找对好码的更有效,可处理更多错误的译码法,本课题对具潜在应用价值的代数几何码的可能技术应用有意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于速变LOS的无人船反步自适应路径跟踪控制
带球冠形脱空缺陷的钢管混凝土构件拉弯试验和承载力计算方法研究
多层采空积水区瞬变电磁响应研究
基于图像法表征复杂背景下石膏雨液滴实验研究
基于物联码的工业产品信息追溯方法研究
代数几何码的改进列表译码
基于代数几何的译码算法
代数几何码的构造和高速译码及其应用
算术代数几何在经典码的构造及列表译码中的应用