In order to ensure the development requirements of some major strategic projects of China, including on-orbit service and operations, the design of control systems for spacecraft proximity operations has become a key technique. Previous studies usually focused on the realization of the final pose tracking objectives, and neglected many important issues during the process of motion control, such as motion constraints and flying safety requirements. In this research, six-degree-of-freedom motion constraints and practical issues related to the spacecraft proximity operations will be described and formalized, then the integrated attitude-position motion model of spacecraft will be presented. A complex planning problem is to be established, in which the approach path constraint, field-of-view constraint, and actuator saturation will be considered, and then a multi-objective multi-constraint rolling optimization strategy for spacecraft integrated attitude-position trajectory planning will be proposed. To further deal with the model uncertainty problem, the adaptive dynamic programming based intelligent controller will be studied. In addition, to reduce the online complexity and to improve the tasking ability regarding many practical issues, the artificial potential guidance based feedback controller for spacecraft integrated attitude-position tracking will be designed. Last, by employing sliding mode technique, a safety control method will be developed to further deal with flying safety requirements like collision and obstacle avoidance. This research could introduce high-safety and high-precision features, multi-tasking abilities, and provide theoretical and technical foundations for the autonomous pose control technique of spacecraft, and also enhance the ability of independent innovation of China's aerospace industry.
为保障空间在轨服务、在轨操作等国家重大战略项目的发展需求,航天器临近操作控制系统设计已成为一项关键技术。既往研究着重于最终位姿跟踪目标的实现,疏于考虑运动控制过程中所存在的各类运动约束、飞行安全要求以及其他重要实际问题。本项目将对六自由度运动约束与各类实际问题进行代数化描述,建立航天器位姿耦合运动模型;研究存在接近路径约束、视场约束以及执行机构饱和的规划问题,提出航天器多约束多目标位姿一体化滚动优化方法;考虑模型不确定性,提出基于自适应动态规划技术的智能自主控制方法;进一步利用势函数制导研究航天器位姿一体化反馈控制方法,以降低在轨运算复杂度并提升任务能力;继而针对障碍规避和碰撞避免等飞行安全需求,提出基于滑模变结构的安全自主控制方法。研究成果将推动高安全性、高精度、多任务能力的航天器位姿一体化控制技术的基础理论和应用研究,提升我国航空航天领域的自主创新力。
为保障空间在轨服务、在轨操作等国家重大战略项目的发展需求,围绕航天器临近操作控制系统设计这一项关键技术。本项目开展了对六自由度运动约束与各类实际问题进行代数化描述,建立了航天器位姿耦合运动模型;研究了存在接近路径约束、视场约束以及执行机构饱和的规划问题,提出航天器多约束多目标位姿一体化滚动优化方法;考虑模型不确定性,提出基于自适应动态规划技术的智能自主控制方法;进一步利用势函数制导研究航天器位姿一体化反馈控制方法,以降低了在轨运算复杂度并提升任务能力。研究成果发表在控制与航空航天领域内AIAA和IEEE系列高水平期刊上,有着较高的学术影响力,并推动了高安全性、高精度、多任务能力的航天器位姿一体化控制技术的基础理论和应用研究,有助于提升我国航空航天领域的核心竞争力。
{{i.achievement_title}}
数据更新时间:2023-05-31
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
考虑多种约束的航天器编队姿态协同容错控制方法研究
复杂航天器姿态运动的鲁棒和自适应控制
基于机械臂驱动的超近距离操作航天器位姿一体化鲁棒自适应控制
航天器大型柔性结构的自适应主动控制