Due to the high efficiency, low cost, lower environmental pollution than ASP flooding, polymer flooding will dominate the future in oil production. There are a lot of disadvantages e.g., viscosity loss, low accuracy, adjustment difficulty in the traditional injection allocation due to the lack of the basic theoretical research on multi-field coupling flow process and viscosity loss mechanism resulting in resource consumption. It showed that the polymer injection is complex as a result of the multi-field coupling flow process and the non-Newtonian property of polymer. However, there has been no accurate and complete theory existed for injection parameter design, and there is no way to achieve scientific injection allocation. The main objective of this project is to study the scientific essence of the coupled flow law of mixed-phase flow, stratified injection, throttle of allocation equipment and perforation, percolation and viscosity loss mechanism as the characteristic parameters such as pressure, viscosity, system composition and structure parameter. A mathematical model of the specific power-law non-Newtonian fluid and viscosity transformation in coupled flow conditions and its influence mechanisms are provided. The mechanisms of mechanical degradation and depressurized effect as well as the throttle mechanism of polymers resulting from multiple underground working conditions are clarified. A new principle of the continuously adjustable stratified injection allocation using explore spindle spool is explored. It provides a theoretical basis and technical support and has an important theoretical significance and application value for the development of a new generation of stratified injection allocation technology through the systematic and profound research.
聚驱采油具有驱油效率高、成本低、相对于三元复合驱环境污染小等优点,将成为未来高含水原油开采的主流发展技术。传统配注技术因其基础理论研究不完善,存在粘损大、精度低、调节困难等缺点,耗费大量资源。聚驱分注因涉及非牛顿流体的多工况耦合,流动规律与粘度变化极其复杂,然而至今尚无清晰完整的理论用于指导科学分注。本项目以压力、流量与粘度等特征参数为主要研究对象,应用多学科理论、系统实验设计及先进观测手段,研究聚驱配注混合节流、垂直管流、配注器及炮眼节流、地层渗流等多工况耦合流动与粘损的科学本质所在;建立非牛顿流体多工况耦合流动的数学模型,阐明各参数对其影响机制;揭示多工况耦合下聚合物的机械降解与滞留作用机制及降压节流作用机理;探索采用螺旋单元及梭形阀芯进行压力、流量、粘度调控的新原理新方法。通过系统深入研究,为发展新一代聚驱分层配注技术提供理论基础与技术支持,具有重要的理论意义和应用价值。
聚驱采油具有驱油效率高、成本低、相对于三元复合驱环境污染小等优点,将成为未来高含水原油开采的主流发展技术。传统配注技术因其基础理论研究不完善,存在粘损大、精度低、调节困难等缺点,耗费大量资源。聚驱分注因涉及非牛顿流体的多工况耦合,流动规律与粘度变化极其复杂,然而至今尚无清晰完整的理论用于指导科学分注。本项目以压力、流量与粘度等特征参数为主要研究对象,应用多学科理论、系统实验设计及先进观测手段,研究聚驱配注混合节流、垂直管流、配注器及炮眼节流、地层渗流等多工况耦合流动与粘损的科学本质所在;建立非牛顿流体多工况耦合流动的数学模型,阐明各参数对其影响机制;揭示多工况耦合下聚合物的机械降解与滞留作用机制及降压节流作用机理;探索采用螺旋单元及梭形阀芯进行压力、流量、粘度调控的新原理新方法。通过系统深入研究,为发展新一代聚驱分层配注技术提供理论基础与技术支持,具有重要的理论意义和应用价值。项目组成员自项目执行以来共发表学术论文3篇,其中SCI检索论文2篇,EI检索论文1篇,另有3篇文章在投。申请发明专利18项,其中已授权12项;基于本课题研究先后获得省部级科技奖励2次,其中“油田细分注采井下智能调控关键技术”获得黑龙江省技术发明一等奖,“聚驱分注连续可调智能配注技术”获得黑龙江省科技进步二等奖。培养博士生2名,硕士生4名,已毕业硕士生2名,培养本科生1名,已毕业1名。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
注蒸汽多场耦合驱油机理的多层次描述与分析
注蒸汽驱油过程多场耦合火用传递的基本规律及驱油机理研究
砾岩油藏复合驱协作增效聚-表二元体系的构建及微观驱油机理
残余油导向的纳米聚硅驱油剂制备及其提高水驱油藏采收率作用机制