MicroRNAs comprise a class of small, noncoding RNAs that are incredibly important regulators of gene expression. They are known to play an important regulatory role in a number of biological functions, including cell differentiation and proliferation, developmental timing, and neural development and they are found to accompany many diseases, such as diabetes, cancer, and neurodegenerative disorders. Therefore, microRNAs have been proposed as informative targets for both diagnostic and therapeutic applications..Despite the critical role in cellular processes and promise as biomarkers, the short sequence lengths, low abundance, and high sequence similarity of microRNAs all conspire to complicate detection using conventional RNA analysis techniques, such as Northern blotting, reverse transcriptase polymerase chain reaction( RT-PCR) , and cDNA microarrays..Silicon-based sensors, especially those based on slot waveguide and microring optical resonators are an emerging class of sensitive, chip-integrated bisosensors for detection of a wild range of biomolecular targets. In this proposal, we employ slot-waveguide optical resonators, which are highly sensitive to biomolecule binding-induced changes in the local refractive index, to enhance the optic fields interacting with microRNAs. The optical mode distribution in a slot waveguide sensor and the influences of introducing microRNA probes and microRNAs will be analyzed. The fabrication process including electron beam lithography (EBL) and inductively coupled plasma(ICP) etching will also be studied to fabricate the sensors. Combined with high specification probe design, a label free microRNA sensor with picomolar level sensitivity will be realized and the application in viral microRNA detection will also be investigated.
微小RNA对细胞的基因表达、发育分化具有重要的调控作用,是生命科学领域研究的热点,实现microRNA的无标记检测对于生物学和纳米光子学的研究都具有重要的意义。本项目利用狭缝波导对光的超强限制能力及各种复杂光学结构形成对光场的高度局域化,结合高特异性生物探针和生物修饰的研究来增强光场与被测microRNA的相互作用。重点分析光波在基于狭缝波导的传感器中的行为模式、模场分布及microRNA及其生物探针的物理、化学、动力学特性对光场分布的影响,建立光波与microRNA相互作用模型;研究高特异性microRNA生物探针及其在百纳米量级尺度下的微流体力学,提高生物探针的修饰效率;研究利用电子束曝光、等离子刻蚀等半导体加工工艺制备狭缝波导以及多种复杂光学结构的生物传感器,在国际上首次实现检测精度在皮摩尔量级的microRNA高灵敏度无标记生物传感器并在检疫系统中开展应用研究。
硅基光子学生物传感器是近年来兴起的一种新型生物传感器,由于其具有高灵敏度、低成本,集成度高,工艺成熟等优势而被广泛关注,并在病毒、细菌、DNA等生物传感器方面获得了深入研究并被学术界和工业界所关注。近5年来,各国科学家们从狭缝波导的原理、结构、材料、工艺、覆盖层、待检测物质等多个角度进行了全面深入的研究。从Google学术上以“slot waveguide sensor”为关键词的文章仅2016年就高达311篇可以看出各国学术界对于基于狭缝波导的高灵敏度生物传感器的研究热度之高。.本项目以SOI材料为基础材料,以超强限制狭缝波导为基础结构,以高Q值微环谐振腔为基本系统,利用微环谐振腔的级联作为灵敏度增强,辅助以高耦合效率的光学耦合结构以降低器件损耗,构建高灵敏度miRNA生物传感器。在项目执行期间,我们对狭缝波导内的光场分布进行了仔细分析,首次建立了狭缝波导内光场与物质相互作用的基本模型。并在此基础上,对狭缝波导的尺寸、结构进行了优化设计。与传统的倏逝场传感器不同,狭缝波导传感器更多是依赖于狭缝内部被限制的强光场与物质的相互作用,因此,确保被检测物质能够进入尺度在100nm以内的狭缝波导十分重要。我们通过选择性修饰以及利用PDMS构建微流体系的方式对上述问题进行解决。在充分优化工艺的基础上,我们利用半导体加工工艺加工了不同结构的硅基微环谐振腔生物传感器,并实现了其实现了对大肠杆菌O157抗体-抗原反应的高灵敏度检测,检测灵敏度在10-6,明显高于目前国际上报导的传感器。同时,现有的低致病性禽流感病毒为样本,利用Thermofisher公司提供的miRNA合成软件及试剂,制备了miRNA探针并通过选择性修饰及抗体标记技术,使得检测miRNA达到了50pm的检测浓度。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
Loss of a Centrosomal Protein,Centlein, Promotes Cell Cycle Progression
Complete loss of RNA editing from the plastid genome and most highly expressed mitochondrial genes of Welwitschia mirabilis
面向工件表面缺陷的无监督域适应方法
基于狭缝超强局域模式的片上超声微流控系统特性及其应用研究
基于多酸的无酶生物传感器的构建及应用研究
石墨烯基生物半导体构建无标记生物传感器及在肿瘤早期诊断中的应用研究
基于狭缝波导的高效紧凑型硅基电光调制器