This project focuses on the solution for the commercial NH3-SCR catalysts which exhibit low activity at low temperatures and within the narrow reaction temperature range through combining the properties of both the catalyst preparation and design. (1) The self-propagating high-temperature synthesis (SHS) method is used to synthesize a series of novel nanocomposites catalysts with excellent structural and physical-chemical properities, such as large specific surface area, low crystallization degree, etc.; (2) According to the different temperature characteristics of the activity and selectivity of the first transition series and lanthanide metal oxide as well as the principle of complementary advantages, we develop the binary compound metal oxide catalysts which have high NOx removal efficiency, superior N2 selectivity, and robust tolerance to SO2 and H2O poisoning in the temperature range of 150-500 ℃, by the doping method. The research topics of this project are: (1) effects of the combustion parametes in the process of combustion solution on the physical-chemical properities, the catalytic performance, and the surface characteristics, and their intrinsic relationships; (2) the microscopic mechanism of NOx reduction over TiMnCe(V,Fe) and TiCeV(Fe), and the resistance of TiMnCe(V,Fe) and TiCeV(Fe) to SO2 and H2O poisoning. This project could provide a scientific and theoretical basis for solving the serious NOx pollutions caused by the emissions from vehicles, marine diesel engines, and power plants, as well as lay the technical foundation for the industrialization application of highly efficient and stable NOx reduction in a wide reaction temperature window.
本课题针对商用NH3-SCR催化剂低温活性差、活性温度窗口窄等问题,结合催化剂合成与设计两方面特性提出解决方案:(1)将液相燃烧合成技术应用于催化剂制备,合成大比表面积、低结晶化度等优异物理化学结构特性的新型纳米催化剂;(2)根据第一过渡系和镧系金属氧化物催化活性和选择性等不同温度特性,按照优势互补原则,采用元素掺杂对催化剂改性,开发在150-500℃宽温度窗口具有高NOx去除率、优异N2选择性、较强抗硫抗水性催化剂。本课题将对以下科学问题开展研究:(1)液相燃烧合成时燃烧参数对纳米催化剂物理化学结构特性、催化性能及表面特性的影响规律,揭示它们之间的内在联系;(2)TiMnCe(V,Fe)和TiCeV(Fe)催化还原NOx微观反应机理及抗硫抗水中毒机制。本课题研究为解决车用、船用柴油机以及燃煤电站等NOx污染严重问题提供科学理论依据,为宽温度窗口高效、稳定净化NOx产业化应用奠定技术基础。
选择性催化还原(SCR)技术是控制柴油机NOx排放的主要技术之一。目前商用的V2O5/ TiO2催化剂在中高温下(300-400°C)有较高NOx转化效率。随着法规的日益严格,亟需SCR系统能够在低温下高效运行,本项目主要围绕催化剂配方和制备方法开展研究,开发在低温下(< 250 ℃)具有高活性的SCR催化剂。.(1)以Cu元素为活性元素,采用溶液燃烧合成法制备了低温性能良好的Ti0.75Ce0.15Cu0.05W0.05O2-δ催化剂,并对该催化剂进行了反应动力学实验,得出其反应速率常数和表观活化能。采用原位漫反射红外傅立叶变换光谱(in situ DRIFTS)研究了该催化剂的反应机理:其 SCR反应遵循Eley-Rideal反应进行,且Lewis酸性位上吸附的NH3具有较强的活性。.(2)对Ti0.75Ce0.15Cu0.05W0.05O2-δ催化剂进行优化设计,全面研究了制备因素对催化剂性能和结构的影响,以甘氨酸为燃料制备的催化剂孔结构较多,颗粒小,低温性能较高,且燃料与氧化剂的比例(F/O)越高,合成的催化剂的低温性能越好,并优化合成了抗硫性能强的催化剂。.(3)发展了燃烧合成SCR催化剂技术,从制备方法上对钒基催化剂进行改进,采用火焰合成法制备了纳米级别的TiVO催化剂。全面研究了钒负载量、载气流量和种类、转盘转速、前驱物浓度以及转盘距燃烧器出口的距离对催化剂结构和性能的影响,并结合Chemkin计算讨论了催化剂颗粒的形成规律,得出前驱物浓度越大,颗粒碰撞率增大,形成的颗粒粒径较大,以及较低火焰温度和较长的停留时间也会使合成催化剂颗粒较大。.(4)将预混火焰合成技术与溶液燃烧合成技术进行了对比研究,通过TEM、BET、XRD、Raman、XPS、H2-TPR、NH3-TPD表征方法分析了溶液燃烧合成法和火焰合成法制备的Ti0.9V0.1O2-δ催化剂,发现其表面V富集、表面VOx物种聚合链较长、表面Brønsted酸量占优势,使该催化剂中低温性能优秀且抗硫性能良好。.将火焰燃烧合成技术应用于SCR催化剂合成,研究开发了适用于车用柴油机和船舶低速机的低温性能需求的纳米Ti-基复合金氧化物SCR催化剂,并对相关的基础科学问题进行了深入研究,项目研究对发展新一代柴油机SCR技术有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
微波场内低温氮氧化物选择性催化还原基础研究
新型氮氧化物氢气选择还原催化剂的研究
新型低温烃选择性催化还原脱硝催化剂设计、制备及脱硝机理研究
铈基氨选择性催化还原氮氧化物催化剂的结构调控及SO2中毒机理