Optoelectronic integration technologies used in optical interconnect have wide applications in the areas of data centers and superior computer systems. Moreover, the optoelectronic integration technology with broad bandwidth, high speed and low energy consumption has become the current research hot spot and hard point. This project will investigate the integrated chip technologies of light emission for optical interconnect applications. To acquire laser gain medium with wide bandwidth and high gain, energy band characteristics of germanium quantum dots on silicon and interaction mechanism between phonon and optical field will be studied. In order to realize high power and narrow linewidth laser output, the single wavelength oscillation mechanism of the novel semiconductor laser with the combination of germanium quantum dots and microring resonator serving as laser mode discrimination filter will be researched. We will study the absorption property and machiansm of refractive index change in Ge/SiGe quantum well optical waveguides to implement low energy consumption and high speed optical modulator. We will also investigate nano-structure optical waveguide with low loss and large turning angle to achieve multi-channel silicon multiplexer. To obtain high efficient coupling between optical fields, the technologies of mode conversion and evanescent-wave coupling will be studied. We will finally investigate the material growth of germanium quantum dots and germanium quantum wells on silicon, component fabrication and monolithic integration technigues to develop low energy consumption, high speed, wide bandwidth and cost-effective integrated chip of light emission. This research project is benefit to promoting the development of the optical interconnect and optoelectronic integration technologies.
应用于光互连的光电子集成芯片技术在数据中心、超级计算机等领域有着广阔的应用前景,而宽带宽、高速率、低能耗的光电子集成技术已成为当前的研究热点与难点。本项目研究用于光互连的光发射集成芯片技术。研究硅基锗量子点的能带特性以及光场与声子的相互作用机理,获得宽带宽、高增益的激光增益介质;研究硅基锗量子点与作为鉴模滤波器的微环谐振腔相结合的新型的半导体激光器的单波长振荡机理,实现高功率、窄线宽的激光输出。研究Ge/SiGe量子阱光波导的吸收特性和折射率的变化机理,实现低能耗、高速率的光调制器。研究低损耗、大转弯角度的纳米结构光波导,实现硅基多路波分复用器;研究模斑变换和倏逝波耦合技术,实现光场间高效耦合。研究硅基Ge量子点、量子阱材料生长、器件制备工艺及其单片集成技术,研制出低功耗、高速率、宽带宽以及低成本的光发射集成芯片。本项目的研究成果有利于推动光互连、光电子集成技术的发展。
光互连采用与集成电路芯片相类似的光子集成芯片,具有宽带、高速、耗能低、可靠性与稳定性高以及保密性强等优点。基于硅基光电子器件的集成技术的光互连,拥有更高密度的互连集成、更宽的频带宽度、更低的功耗、极小的信号延迟和串扰噪声、精确的时钟分配等优越性,同时还能与CMOS工艺相兼容,具有广阔的应用前景。硅基光互连的关键涉及光源、光调制、波分复用器件以及波导间的耦合与连接。本项目采用锗硅体系材料来研究和制作硅基光电子集成器件,实现片上光互连。光源采用硅基张应变锗微桥来实现,建立了一套分析应变锗材料电学和光学特性的理论模型,设计了一种基于单轴张应变体材料锗的电驱动分布布拉格反射激光器,制作了一种单轴张应变锗光源。调制器采用锗硅应变量子阱来实现,构建了Ge/SiGe多量子阱的能带结构模型,设计并实现了基于单轴张应变和双轴张应变的Ge/SiGe多量子阱波导集成电吸收光调制器。波分复用器采用模式变换的方式,实现了基于非对称均匀光栅辅助型耦合器、非对称单侧幅度切趾和双侧幅度切趾光栅辅助型耦合器的四通道波分复用。设计并制作了一种用于有源Ge/SiGe多量子阱光波导与无源SiGe波导间的垂直耦合结构。本项目实现了光源、调制器、波分复用器、耦合器等集成光电子器件,为硅基光互连提供了一条有效途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于混合优化方法的大口径主镜设计
基于 Stacking 集成策略的 P2P 网贷违约风险预警研究
Ordinal space projection learning via neighbor classes representation
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
面向高像素密度图像传感器的结构色技术
面向光子集成的半导体光子晶体有源与无源器件关键技术研究
多功能生物医学传感检测光电子集成芯片研究
玻璃通孔电磁建模及无源器件集成技术研究
新型多功能石墨烯-硅基纳米集成光电子器件研究