Halogenated phenolic compounds (HPCs) are high toxic pollutants with strong cumulative effects, showing a serious threat to ecosystem and human health. Adsorption technology could efficiently remove HPCs from water, but it is difficult to decompose HPCs thoroughly. In this project, we try to prepare carbon nanotubes modified laccase-carrying electrospun nanofibrous membranes (CNTs-LCEFMs) by electrospinning, and use it to purify the typical HPCs in water through synergistic effects between effective adsorption and in situ enzyme catalytic degradation. The mechanical, adsorptive and enzymatic properties of LCEFMs are expected to be enhanced by CNTs modification. The influences of electrospinning conditions and CNTs modified methods on the morphological structure and properties of CNTs-LCEFMs will be investigated. The adsorption and degradation efficiencies of HPCs (including pentachlorophenol, triclosan and tetrabromobisphenol) by CNTs-LCEFMs will also be analyzed. Based on the analysis of adsorption-degradation dynamic rules, and combining with the molecular dynamics simulation, we try to illuminate the adsorption-migration-transformation processes of HPCs in the composite system of CNTs/fibers/laccase, and reveal the synergistic purification mechanisms in the adsorption-degradation reaction. The synergistic purification technology between adsorption and enzyme catalytic degradation developed in this project will provide a new research approach for water treatment area, and also provide a basic theoretical support for studies on the micro interface reactions of pollutants.
水中的卤代酚类化合物(HPCs)来源广泛、毒性高、蓄积性强,对人类和生态环境健康构成了严重威胁。吸附技术可高效去除水中HPCs,但难以实现其彻底降解脱毒。本项目拟采取静电纺丝技术制备碳纳米管(CNTs)修饰载漆酶纳米纤维膜,以实现水中HPCs的高效吸附及酶催化原位降解。具体地,通过CNTs修饰改善纤维膜的机械性能、吸附性能和酶学性能,考察不同工艺条件和CNTs修饰方法对纤维膜形态结构和性能的影响,并分析其对不同HPCs(五氯酚、二氯苯氧氯酚、四溴双酚A)的吸附和降解性能。基于吸附-降解复合动力学规律分析,结合分子动力学模拟,阐明HPCs在CNTs/纤维/漆酶复合体系中吸附-迁移-转化的宏观规律和微观过程,揭示水中HPCs的吸附-酶催化降解协同净化机理。本项目开发的吸附-酶催化协同净化技术可为水处理领域提供新的研究思路,并为污染物微界面复合反应研究提供基础理论支持。
水中的卤代酚类化合物(HPCs)来源广泛、毒性高、蓄积性强,对人类和生态环境健康构成了严重威胁。吸附技术可高效去除水中HPCs,但难以实现其彻底降解脱毒。本项目采取静电纺丝技术制备碳纳米管(CNTs)修饰载漆酶纳米纤维膜,以实现水中HPCs的高效吸附及酶催化原位降解。首先通过CNTs修饰改善纤维膜的机械性能、吸附性能和酶学性能,考察不同工艺条件和CNTs修饰方法对纤维膜形态结构和性能的影响,并分析其对不同HPCs的吸附和降解性能。基于吸附-降解复合动力学规律分析,结合分子动力学模拟,阐明HPCs在CNTs/纤维/漆酶复合体系中吸附-迁移-转化的宏观规律和微观过程,揭示水中HPCs的吸附-酶催化降解协同净化机理。. 本项目取得了丰富的研究成果,包括:开发了具有高机械性能、强吸附能力和高酶催化活性的CNTs修饰载漆酶纳米纤维膜;评价CNTs修饰载漆酶纳米纤维膜对水中典型HPCs的净化效率;阐明CNTs修饰载漆酶纳米纤维膜对水中典型HPCs吸附-降解协同净化机理。. 研究成果在SCI-期刊上发表论文6篇。其中,在Water Research(影响因子6.942)上发表论文2篇。论文获得了知名期刊Environmental Science & Technology,Water Research,Chemosphere的广泛引用,并获得了较高的学术评价,取得了一定的学术影响力。此外,在国内核心刊物上发表论文2篇,申请国家发明专利3项,已获授权2项;合作培养硕士研究生2名,博士研究生1名。. 本项目开发的吸附-酶催化协同净化技术可为水处理领域提供新的研究思路,并为污染物微界面复合反应研究提供基础理论支持。研究成果已在工业行业推广,推动了酶催化技术更加有效地为污水处理的工业实际应用服务。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
漆酶诱导白水中酚类物质迁移至纤维表面的机理研究
漆酶介体系统降解非酚类卤代农药的机理研究与介体分子设计
卤代酚类有机污染物与甲状腺蛋白作用的分子机制研究
碳纳米管修饰载钯催化电极的制备及氯酚类污染物的电化学还原脱氯-无机化降解