Self-healing polymers are a new type of biomimetic smart material, and can repair the defects and extend the life of traditional materials. Conductive functionalization is of significance for expanding the application of self-healing polymers in electronics. This is an interdisciplinary science that needs to be explored urgently. This project intends to introduce the intrinsic self-healing function to the intrinsically conducting polymers, poly(3,4-ethylenedioxythiophene) and its derivatives (PEDOTs). With the help of supramolecular polymers that with the dual roles of non-covalent hydrogen bonding and reversible covalent bonding induced by Diels–Alder reaction, a series of composites will be fabricated which exhibit thermally-driven multiple self-healing performance, and synergistic recovery of conductive and mechanical properties. This research will begin with the design and synthesis of monomeric structures of EDOTs and the selection and polymerization of supramolecular precursors for Diels–Alder reaction. Then, the chemical oxidation or electrochemical polymerization strategy will be utilized to achieve target composits and their thin films. The thermodynamics of the composites will be investigated, and the synergistic self-healing mechanism of the structure and function of the composites will be explored. The critical object is to establish the method to build PEDOTs/Supramolecular self-healing conductive polymers. Further, their electrical properties and filmy applications for novel green energy (i.e., thermoelectrisity) and novel energy-saving technology (i.e., electrochromics) will be researched, and then the relationship between material structure and device performance will be revealed. It is believed that this work will promote the functionalization of self-healing materials and the flexible and intelligent development of conducting polymers.
自修复聚合物是新型仿生智能材料,可修复传统材料缺陷并延长其寿命。导电功能化对拓展其电子学应用具有重要意义,是亟待探索的交叉领域。本项目拟将本征自修复功能引入本征导电聚(3,4-乙撑二氧噻吩)及其衍生物(PEDOTs),利用可逆动态氢键和共价键(Diels–Alder 反应)结合的超分子聚合物,构建系列兼具热驱动并可多次结构自修复、导电和力学性能等协同恢复的复合物。拟以EDOTs单体结构的设计与合成,超分子前驱体的选择和Diels–Alder聚合为基础,采用化学氧化或电化学聚合策略实现目标复合物及其薄膜的构建。研究复合材料的热动力学,探明复合材料的结构和功能协同自修复机制,重点建立PEDOTs/超分子自修复导电聚合物的构建方法学,研究其电学性能及在新型绿色能源(如热电)及新型节能技术(如电致变色)方面的应用,揭示材料结构与器件性能的关联,推动自修复材料功能化和PEDOTs柔性智能化的发展。
自修复聚合物是新型仿生智能材料,可修复传统材料缺陷并延长其寿命。导电功能化对拓展其电子学应用具有重要意义,是亟待探索的交叉领域。本项目将本征自修复功能引入本征导电聚(3,4-乙撑二氧噻吩)及其衍生物(PEDOTs),利用可逆动态氢键、共价键(Diels-Alder 反应)结合的超分子聚合物等,实现了水驱动或热驱动的薄膜裂纹结构自愈合、及导电、热电和力学性能的协同恢复,并探究了复合材料的结构和功能协同自愈合机制,揭示了材料结构与器件性能的密切关联。重点建立了EDOTs的优化合成与聚合策略、PEDOTs:PSS的结构形貌和自修复与电学性质调控技术、PEDOTs/超分子自修复导电聚合物的构建方法学,研究了其电学性能及在热电、电致变色、超级电容器等方面的应用,揭示了材料结构与器件性能的关联,推动自修复薄膜或凝胶材料的功能化和PEDOTs向柔性、可穿戴、可拉伸等智能电子方向的发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
Enhanced piezoelectric properties of Mn-modified Bi5Ti3FeO15 for high-temperature applications
神经退行性疾病发病机制的研究进展
基于腔内级联变频的0.63μm波段多波长激光器
具有随机多跳时变时延的多航天器协同编队姿态一致性
三明治结构二维层状TMDs/导电PEDOTs纳米复合材料的可控制备及电化学性能
界面聚合方法可控制备PEDOTs/MXenes复合材料及其传感性能研究
有机半导体本征自旋注入和传输性能研究
酞菁基导电配位聚合物薄膜的制备和电学性能研究