As the development of the multiband detection technology, broad band and multi band stealth materials become the most important part of the modern weapons. However, the traditional microwave absorber is restricted by the strength and bandwidth leading to that it is hard to realize broad band and multi band absorption. It is found that the magnetic medium based metamaterial absorber has magneto electric characters and exotic electromagnetic properties which may solve the above mentioned problem. The researcher found that this composite has the broad band and multi band absorption characters and there are energy transformation at the boundary of the medium and metamaterials. However, the detail mechanism of the energy absorption is still unclear. In this work, we plan to study the energy transformation of the boundary and the electromagnetic coupling effect. We will design the FG-SRRs metamaterials and the 3D printing or silk screen printing technique will be applied to fabricate the materials. The surface plasmatic wave and local enhanced electromagnetic field will be observed and studied. The left-hand character will be analysis though the effective medium theory. The local electromagnetic resonance of the magnetoelectric particles and the inter-coupling effect would be analyzed though the absorbing spectrum. This project has great potential application and academic merit in multi- and broad band stealth.
随着多频谱复合探测技术的发展,宽波段/多频谱隐身材料成为了现代隐身装备中至关重要的组成部分。然而传统电磁吸波材料的高频磁导率较低,无法实现宽频/多频谱的隐身功能。电磁介质/超构复合材料能借助超材料的高频磁响应特性弥补电磁介质的缺陷。研究发现超材料诱发的局域强电磁场与电磁介质的耦合共振是能量吸收的关键因素,而其具体的作用机理有待进一步挖掘。为此,本项目计划开展电磁介质/超构复合材料的界面电磁能量转换机制研究,并探讨电磁介质/超构复合材料对吸收频率的调控方法。设计多波段极化不敏感四开口谐振环(FG-SRRs)超材料,采用丝网印刷等技术制备电磁介质/超构复合材料,并探索3D打印的制备方法;依据等效媒质理论反演的电磁参数和人工等离子激元理论,阐释偶极子共振及局域电磁场在界面的作用机理,揭示其频率调控规律,从而为超薄宽波段/多频谱的电磁介质/超构复合材料的设计提供理论依据。
随着多频谱复合探测技术的发展,宽波段/多频谱隐身材料成为了现代隐身装备中至关重要的组成部分。然而传统电磁吸波材料的高频磁导率较低,无法实现宽频/多频谱的隐身功能。电磁介质/超构复合材料能借助超材料的高频磁响应特性弥补电磁介质的缺陷。研究发现超材料诱发的局域强电磁场与电磁介质的耦合共振是能量吸收的关键因素。本项目开展了电磁介质/超构复合材料的界面电磁能量转换机制研究,并探讨了电磁介质/超构复合材料对吸收频率的调控方法。设计多波段极化不敏感超材料,采用印刷电路板技术制备电磁介质/超构复合材料;依据等效媒质理论反演的电磁参数和人工等离子激元理论。研究发现超构材料对电磁波的吸收源于三个方面,第一:超材料本身的尺度效应引起的电磁共振;第二:超材料与底板之间的共振耦合效应;第三:超材料阵列之间的共振耦合效应以及其激发的局域强电磁场。仿真研究表面,在低频段的吸收峰源于超材料阵列之间的共振耦合和局域强电磁场效应,而在高频段的吸收峰则源于超材料的尺度效应。局域强的共振电磁场是造成电磁波能量吸收和转换的关键。本项目发明了多层次梯度渐变的蜂窝超结构吸波材料。与传统的蜂窝吸波材料相比,超构蜂窝吸波材料能够调控吸波频段,能够在低频段弥补现有吸波材料的不足,实现全频段的吸波性能。本项目的研究拓展了吸波材料的研究领域,实现了在比较薄的条件下宽频隐身的要求,推动了吸波材料往结构方向发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
太赫兹介质超构表面类电磁诱导透明研究
双面超构表面及电磁波双向任意调控研究
超构材料电磁散射的时空调控问题研究
基于梯度电磁超介质的电磁波的非对称传输特性