Multiple objective control and complex uncertainty control are the key problems which limit the performance improvement of motion control of ground unmanned combat platform, such that affect the practicability of ground unmanned combat platform greatly. This research proposal mainly aims at the problem of motion control of ground unmanned combat platform. Based on U-K theory and constraint transformation, constraint remodeling method is proposed, and then an unequal constraint-following control scheme is formulated, by combining which with the multiple objective performance of constraint-following control, the problem of unequal multiple objective control can be solved. Meanwhile, multiple time-varying uncertainties are considered. Based on unequal constraint-following and Lyapunov stability theory, a double adaptive algorithm is designed, combining which with robust control, a double adaptive robust control strategy is then proposed. With this proposed strategy, not only the problem of concurrent control of multiple time-varying uncertainties can be solved, but also the augmented system can be driven to appear multiple unequal motion characteristics. Following above theoretical innovation, an experimental platform of miniature ground unmanned combat platform is built, for which pursuit-evasion constraint and motion control algorithm are then constructed, following this, with pursuit-evasion control experiment its control mechanism is revealed. This research proposal is a theoretical innovation and improvement work of constraint-following control method, which should render out a better control performance and higher feasibility and practicability, and provide a new theoretical basis and implementation method for practical development of ground unmanned combat platform, even the whole army and civilian ground mobile platform.
多目标并行控制和复杂不确定性控制是限制地面无人作战平台运动控制性能提升的关键问题,极大地影响着其实用性。本项目针对地面无人作战平台运动控制问题,基于U-K理论和约束变换方法,提出约束重组技术,构建不等式约束跟随控制体系,利用约束跟随控制的多目标并行控制特性,解决“不等型”多目标并行控制问题;兼顾多元时变不确定性干扰,基于不等式约束跟随思路和李雅普诺夫稳定性原理,设计双层自适应算法,结合鲁棒控制特性,构建双层自适应鲁棒控制策略,解决多元时变不确定性并行控制问题的同时,使系统呈现出多组“不等型”运动特性;搭建小型地面无人作战平台实验平台,建立追踪与反追踪约束模型和控制算法,开展追踪与反追踪控制实验,揭示其控制机理。本项目是对约束跟随控制的进一步理论创新与完善,在提高控制性能的同时增强其可行性和适用性,为我国地面无人作战平台乃至整个军、民地面移动平台实用化发展探索一种新的理论基础和实现方法。
本项目针对地面无人作战平台运动控制问题,基于约束重组技术,探究了兼具“不等型”多目标并行控制和多元时变不确定性并行控制特性的不等式约束跟随控制方法。主要完成内容如下:基于U-K理论和约束变换,提出了约束重组技术,构建了不等式约束跟随体系,利用约束跟随控制的多目标并行控制特性,解决了“不等型”多目标并行控制问题;兼顾多元时变不确定性干扰,基于不等式约束跟随思路和李雅普诺夫稳定性原理,设计了双层自适应算法,结合鲁棒控制特性,构建了双层自适应鲁棒控制策略,解决了多元时变不确定性并行控制问题的同时,使系统可同时具备多组“不等型”运动特性;搭建了小型地面无人作战平台试验平台,建立了追踪与反追踪约束模型和控制算法,开展了追踪与反追踪控制试验。基于本项目发表14篇SCI论文和2篇EI会议论文,申请发明专利2项,授权实用新型专利2项。培养硕士研究生4名,协助培养博士生6名。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
基于多模态信息特征融合的犯罪预测算法研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
地面无人平台的越野地形可行驶性分析方法研究
基于行驶空间的地面无人平台越野自主导航研究
无人驾驶城轨车辆运动控制方法研究
基于层级堆聚理论的并联机器人动力学建模与约束跟随控制方法研究