Diesel vehicle exhausts are the major source of primary particulate matters especially Fine and Ultra Fine Particulate Matters (FPM, UFPM). Due to the low filtration efficiency on the UFPM and high regeneration temperature, commercial Catalyzed Diesel Particulate Filter (CDPF) can not meet the current and future requirements for Diesel emission control. Oriented nanostructure based catalysts have been proved to have high surface area and improved low temperature catalytic activity. This proposed project will focus on improving the filtration efficiency of FPM and UFPM from diesel engine exhausts through fabrication of a well-defined, oriented micro/nanostructure catalysts integrated DPF. As a game-changer technology, the proposed technology could potentially replace the state-of-the-art (SOA) wash coated powder catalysts coating technology by three fold: 1) The increased UFPM filtration efficiency due to increased surface area and porous structure intrinsic trapping ability; 2) Reducing DPF maintenance cost and lifetime by lower regeneration temperature; 3) Reducing the fuel/energy consumption via the lower regeneration temperature. In the project, the well-defined micro/nanostructure will be fabricated via a cost effective, low temperature solution method. The relationship between morphology of coated catalysts and FPM/UFPM filtration efficiency will be demonstrated. The low temperature soot oxidation performance and mechanism under O2 and NO2 atmosphere will also be illustrated. The proposed DPF technology as well as the scientific and technologic understanding will definitely contribute to the PM pollution abatement.
柴油发动机是细颗粒和超细颗粒物的主要来源。当前商用催化型柴油颗粒物捕集器(CDPF)不能有效去除超细颗粒物,且催化再生温度高,无法满足当前和未来柴油车尾气控制的需求。有序纳米结构催化剂表面积高、低温活性优于涂覆催化剂,是理想的机动车尾气催化剂。本项目以有序微/纳米CeO2基(MxCe1-xO2;M=Zr, Mo, La, Pr)催化剂负载CDPF为研究对象,利用低温溶液法实现其在DPF基底上的均匀可控生长,探究掺杂元素对MxCe1-xO2有序微/纳结构热稳定性和抗硫性的影响机制,阐明有序微/纳米结构MxCe1-xO2对柴油颗粒物尤其是超细颗粒物的捕集和催化燃烧机理,揭示MxCe1-xO2有序微/纳结构形貌与其超细颗粒物捕集性能之间的构效关系,并深入研究在O2和NO2条件下有序微/纳米MxCe1-xO2 低温催化燃烧颗粒物的性能及机理。籍此为柴油车源超细颗粒物的治理提供科学依据和技术支撑。
柴油发动机是细颗粒和超细颗粒物的主要来源。当前商用催化型柴油颗粒物捕集器(CDPF)不能有效去除超细颗粒物,且催化再生温度高,无法满足当前和未来柴油车尾气控制的需求。有序微/纳米结构催化剂表面积高、低温活性优于涂覆催化剂,是理想的机动车尾气催化剂。本项目以有序微/纳米CeO2基催化剂负载CDPF为研究对象,利用模板法和溶胶凝胶法实现其在DPF基底上的均匀可控生长,探究了有序微/纳米结构对柴油颗粒物尤其是超细颗粒物的捕集和催化燃烧机理,揭示了有序微/纳结构形貌与其超细颗粒物捕集性能之间的构效关系。籍此为柴油车源超细颗粒物的治理提供科学依据和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
农超对接模式中利益分配问题研究
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
荷电液滴捕集颗粒物变尺度建模及捕集机理
柴油机微粒特性对捕集器再生性能影响机理的研究
汽油车催化型微粒捕集器过滤体再生平衡态特性及协同机理研究
催化型微粒捕集器工作过程动力学特性及协同作用机理研究