Subthreshold depression, as a precursor stage of major depressive disorder (MDD), has a high incidence and causes great harm which brings about serious social and economic burden. However, due to its unclear pathogenesis, it is difficult to identify and prevent the onset of MDD early. Based on the previous study of brain image features of MDD, this project will focus on the subthreshold depression, a transition phase between health and MDD, study the abnormal brain function in subthreshold depression based on multimodal multidimensional big data of neuroimaging and integrate the multi-dimensional information of clinical symptoms, cognitive function, brain structure and function. We hope to reveal the key image features of abnormal functional loci and connections in brain networks in subthreshold depression and construct the disease image model of brain regions-subnetwork-global network level. This project will also implement the individualized distinction of subthreshold depression and healthy subjects based on brain image features. Furthermore, the patients with subthreshold depression will receive psychotherapy and we will establish the prediction model of psychotherapy efficacy based on the image features. This project will reveal the neuropathology of subthreshold depression, implement the disease identification based on brain image features, and provide theory gist for early recognition, prevention and individualized treatment of MDD.
阈下抑郁作为重型抑郁障碍的前驱阶段,发病率高,危害大,社会和经济负担重。但由于其发病机制尚不明,使得抑郁症的早期识别和预防较为困难。本项目在既往抑郁症脑影像表征的研究基础上,针对阈下抑郁这一介于健康和抑郁症的疾病过渡阶段,开展阈下抑郁多模态影像大数据研究,整合临床症状、认知功能、脑结构、功能等多维度信息,揭示阈下抑郁脑网络异常功能位点和连接的关键影像表征,构建脑区-子网络-全局网络等不同层次的疾病影像模型,实现基于脑影像特征对阈下抑郁和健康人的个体化区分,并通过对阈下抑郁患者进行心理治疗,基于上述脑影像特征建立阈下抑郁心理治疗的疗效预测影像模型。上述研究将揭示阈下抑郁的神经病理机制,实现基于脑影像表征的疾病检测,为临床抑郁症早期识别、预防和早期个体化诊治提供重要的理论依据。
重型抑郁症是一种慢性致残性、神经功能高度损伤的精神疾病,因此疾病的早期识别、早期预防和干预十分重要。阈下抑郁作为重型抑郁症的前驱阶段,发病率高,使个人的健康和生活质量显著下降,目前阈下抑郁的发病机制尚不明确。本项目在对抑郁症脑影像表征进行研究的同时,进一步对阈下抑郁进行了多模态磁共振分析,整合了临床症状、认知功能、脑结构、功能多维度信息。发现了伴自杀未遂历史的抑郁症患者脑网络水平功能连接强度异常以及与自杀行为相关的抑郁症脑组织灰质厚度、表面积、体积及曲率等形态学参数异常改变模式。本项目负责人参与的研究项目“重症抑郁症及其不同的亚型脑影像学表征及临床应用研究”荣获四川省医学科技奖一等奖。项目成果在相关国际权威学术期刊发表有标注本基金资助的SCI论文4篇,为今后对抑郁症的神经生物学机制的探索提供了新方法和新思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
跨社交网络用户对齐技术综述
基于SSVEP 直接脑控机器人方向和速度研究
城市轨道交通车站火灾情况下客流疏散能力评价
基于FTA-BN模型的页岩气井口装置失效概率分析
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
基于脑功能网络特征的抑郁症神经生物亚型分类及其疗效预测
首发老年抑郁症疗效预测的神经影像学标记
基于多元神经影像表征的帕金森病患者脑深部电刺激疗效的预测研究
基于机器学习的抑郁症脑网络连接特征分型对抗抑郁剂的疗效预测研究