非线性分析方法与奇异摄动理论在力学中的若干应用

基本信息
批准号:11501260
项目类别:青年科学基金项目
资助金额:18.00
负责人:孙莉
学科分类:
依托单位:江苏师范大学
批准年份:2015
结题年份:2018
起止时间:2016-01-01 - 2018-12-31
项目状态: 已结题
项目参与者:王广瓦,陆海霞,江君,尚晓慧
关键词:
非线性分析奇异摄动ReissnerMindlin板理论弹性梁中厚板
结项摘要

Nonlinear analysis is a particularly important topic from the theoretical as well as the applied point of view.The methods in nonlinear analysis can be applied in many kinds of nonlinear differential equations, integral equations and other kinds of equations. These methods play important roles in many other fields, for example computational mathematics and control theory. Singular perturbation theory is mainly a kind of effective theories and methods to study the asymptotic solutions of differential equations, and now has become a powerful tool to deal with the nonlinear problems.. This project mainly uses the methods in nonlinear analysis and the singular perturbation theory to research some problems in mechanics. First of all, some problems from elastic beams will be discussed. To do this, we will first study the calculation of topological degree under the lattice structure and the number of fixed points in the theory of global structure. And then, six fundamental types of beam equations will be processed in a unified framework and some more comprehensive results of the existence and the number of positive solutions are expected to be obtained. Secondly, with the aid of the singular perturbation theory, we will investigate the singular perturbation of bending problem of elastic thick plate on nonlinear foundation including two parameters and the stability analysis of nonlinear vibration of large deflection plate.

非线性分析是现代数学中一个既有深刻理论意义又有广泛应用价值的研究方向。非线性分析方法可以应用于各种非线性微分方程、积分方程和其他类型的方程以及计算数学、控制理论等许多领域。奇异摄动理论主要是研究微分方程渐近解的一种有效的理论和方法,现在已经成为处理非线性问题的一种强有力的工具。. 本课题主要利用非线性分析方法和奇异摄动理论去研究力学中的若干问题。首先,利用格结构理论下拓扑度的计算方法以及全局结构理论下不动点个数问题的研究去处理弹性梁问题。主要是将六种梁方程类型纳入一个统一的框架下处理,期望对正解的存在性、个数等有更加深入的讨论。其次,利用奇异摄动理论去研究含双参数非线性地基上弹性厚板弯曲问题的奇异摄动,以及板的大挠度非线性振动稳定性分析。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
3

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
4

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
5

基于SSVEP 直接脑控机器人方向和速度研究

基于SSVEP 直接脑控机器人方向和速度研究

DOI:10.16383/j.aas.2016.c150880
发表时间:2016

孙莉的其他基金

批准号:41271437
批准年份:2012
资助金额:75.00
项目类别:面上项目
批准号:81460180
批准年份:2014
资助金额:47.00
项目类别:地区科学基金项目
批准号:81671099
批准年份:2016
资助金额:57.00
项目类别:面上项目
批准号:61701531
批准年份:2017
资助金额:25.00
项目类别:青年科学基金项目
批准号:30770756
批准年份:2007
资助金额:8.00
项目类别:面上项目
批准号:11701337
批准年份:2017
资助金额:25.00
项目类别:青年科学基金项目
批准号:30500169
批准年份:2005
资助金额:22.00
项目类别:青年科学基金项目
批准号:81571201
批准年份:2015
资助金额:57.00
项目类别:面上项目
批准号:41802250
批准年份:2018
资助金额:26.00
项目类别:青年科学基金项目
批准号:81241127
批准年份:2012
资助金额:10.00
项目类别:专项基金项目
批准号:61901255
批准年份:2019
资助金额:25.50
项目类别:青年科学基金项目
批准号:81571231
批准年份:2015
资助金额:57.00
项目类别:面上项目
批准号:40871204
批准年份:2008
资助金额:43.00
项目类别:面上项目
批准号:81070968
批准年份:2010
资助金额:32.00
项目类别:面上项目

相似国自然基金

1

奇异摄动理论及其在动力系统中的应用

批准号:11071205
批准年份:2010
负责人:杜增吉
学科分类:A0301
资助金额:28.00
项目类别:面上项目
2

变分方法和几何奇异摄动理论及其在微分方程中的应用

批准号:11101349
批准年份:2011
负责人:林晓洁
学科分类:A0301
资助金额:22.00
项目类别:青年科学基金项目
3

随机几何奇异摄动理论及应用

批准号:11771161
批准年份:2017
负责人:李骥
学科分类:A0301
资助金额:48.00
项目类别:面上项目
4

非线性科学中的奇异吸引子与摄动

批准号:19071062
批准年份:1990
负责人:周焕文
学科分类:A0306
资助金额:0.80
项目类别:面上项目