We demonstrate the existence of ground state solutions in coupled discrete nonlinear Schrödinger equations (CDNLS) with periodic potentials. First, we consider two types of solutions to CDNLS periodic and vanishing at infinity. Calculus of variations and the Nehari manifolds are employed to establish the existence of the periodic solutions, and then, using periodic approximations, we present sufficient conditions on the existence of ground state solutions which are vanishing at infinity. Second, we show that each of the components of this ground state solutions are not zero. Third, extensive numerical examples in three dimensions for ground state solutions are presented to demonstrate the power of the numerical methods.
首先,利用 Nehari 流形结合周期逼近的方法讨论了耦合离散非线性薛定谔方程两类基态解的存在性,一类为周期基态解;一类为同宿基态解.其次,得到同宿基态解的各个分量均不为零. 最后,利用数值方法模拟耦合离散非线性薛定谔方程(具有三分量)的非平凡同宿基态解.
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
粗颗粒土的静止土压力系数非线性分析与计算方法
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
非自共轭与自共轭离散系统的边值问题、周期解及同宿轨
几类非线性Hamilton系统周期解和多包同宿解的存在性与多重性研究
泛函微分方程周期解、同宿解及相关问题的研究
多体问题的周期解、中心构型及同宿轨