With the development of optics communication and information technology, the new perceptive technology with properties of miniaturization, high sensitivity, easy integration and high efficient resource utilization becomes a major development trend. And it is also one of the goals of their future development. Thus, under the demand for miniaturization, easy integration and high sensitivity information sensing, the researches of nano sensors are very important since sensors with excellent characteristics are regarded as the core components in the comprehensive perception system. In this project, regarding the novel photonic crystal structures integrated of various nanocavities and waveguides as the research subject, we will study the sensing properties and mechanisms of the nano sensors. The research contents consist of two parts: numerical simulation and experimental measurements. At first, we use numerical simulation to study the optical wave properties in photonic crystal integration structures of one chip. By meticulously analysing the transmission characters of optical wave in the photonic crystal structures integrated of various nanocavities and waveguides, we can design the optimized photonic crystal sensor models. In addition, by bringing in external control parameters we focus on the sensing mechanism of the multiplexed integrated structures based on the photonic crystal slab. And then, we make thorough study on sensing performance and analyze their sensing characteristic parameters such as quality factor, sensitivity, sensing bandwidth, resolution and crosstalk of channels. On the basis of the above steps, we will design and fabricate the sensing models which can be used for experimental measurements, and manufacture the experimental samples in silicon-on-insulator (SOI) materials by using of micro-nano device manufacturing technologies such as focused ion beam (FIB) and electron-beam lithography (EBL). We also design and build experimental platform to complete experimental measurements. The experimental results can be used to guide the fabrication of micro-nano sensors with high performance. The research results will be not only of practical guiding significance to the design of micro-nano sensors, but also of important reference value to the development of intelligent optical perceptive technology.
随着信息技术的发展,小型化、高灵敏度、集成化、资源高效利用的感知技术成为未来发展趋势与目标。针对小型集成化高灵敏度信息感知的需求,作为其核心元件,微纳传感器的研究十分重要。本项目针对该问题,以新型的微纳光子晶体不同微腔和波导集成结构与特性为研究对象,研究其实现高性能的新型微纳传感功能与机制。项目具体通过分析可用于传感功能的光波在光子晶体微腔与波导集成结构中的传输特性,设计光子晶体传感模型,通过引入外部控制参数,重点研究平板光子晶体集成结构实现多路复用的传感机制,深入研究其传感性能,分析其传感特征参数如品质因数、灵敏度、感知范围和分辨率、串扰等,在此基础上设计可实验制作的光子晶体传感模型,完成相应制作并设计微纳模块传感平台实验测试方案,进行实验测试。研究结果不仅对未来微纳传感的研究与设计具有实际指导意义,而且对未来智能光感知技术的发展具有重要参考价值。
本项目瞄准微纳集成光子传感领域国际最新前沿动态,针对微型化、 超紧凑、集成化以及高灵敏度等传感性能指标,详细研究了基于不同的平板光子晶体波导和微腔基元结构以及其集成结构的带隙特性、光场分布特性、透射特性和传输特性等光学性能。重点研究了不同结构光子晶体波导与微腔单片集成后的导光控光机制和传感机制,通过分析可用于传感功能的光波在光子晶体微腔与波导集成结构中的传输特性,设计了光子晶体传感模型,通过引入外部控制参数,研究了平板光子晶体集成结构实现多路复用的传感机制,优化研究了其传感性能,分析了其传感特征参数如品质因数、灵敏度、兼容因子、感知范围和分辨率、串扰等,在此基础上设计完成了可实验制作的光子晶体传感模型,完成相应制作并设计微纳模块传感平台实验测试方案,完成了实验测试。研究结果不仅对微纳光子晶体集成结构特性以及高性能小型化传感模块的研究与设计具有实际指导意义,而且对未来智能综合化光感知技术的发展具有重要参考价值。通过深入细致的理论分析、数值研究和实验研究,项目组得出了一系列重要研究结果,在OSA Optics Express, OSA Journal of the Optical Society of America B,OSA Journal of Lightwave Technology,OSA Applied Optics,IEEE Photonics Technology Letters, IEEE Photonics Journal, AIP Applied Physics Letters, MDPI Sensors, Elsevier Sensors and Actuators A: Physical, Elsevier Optics Communications等国际著名学术期刊以及CLEO、OFC、ACP、ICOCN等国际会议上共发表(含录用)50篇学术论文,其中三大检索论文50篇(SCI/38篇);国外期刊38篇,国际会议12篇,另外在国内《光学学报》“现代光信息传感”专题栏目上完成特邀论文1篇;申请国家发明专利8项。本项目的研究成果可以对促进高性能前沿微纳光子晶体集成性能关键理论与技术以及其在未来高精度多功能微型化传感检测应用的研究发展起到理论与实验前期指导作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
拥堵路网交通流均衡分配模型
服务经济时代新动能将由技术和服务共同驱动
基于光子晶体异构微腔的硅基电致发光器件基础研究
硅基光子晶体波导器件制备研究
InGaAsP量子阱电泵浦光子晶体WGM微腔激光器与输出光波导的集成
平板型柔性光子晶体波导及其器件的研究