The energy crisis and environmental pollution are the two major problems for human beings survival and development, vigorously developing wind power generation is one of the most important means to solve these problems. At present, the relatively high levelized cost of wind energy hinders the healthy development of wind power industry to a great extent in our country. The research and application of new techniques which could decrease cost and improve efficiency for blade (the most important component of wind turbine) is an effective way to solve the above problem. The aerodynamic shape and internal structural topology collaborative optimization of blade is studied in this project to reveal the coupling mechanisms between aerodynamic shape, load paths and internal topology form, thus to propose conceptual design methods and schemes of new airfoil and the entire blade; low-speed wind tunnel tests of airfoils and static tests of blade scale models are carried out to explore the transformation relationship between the loads and the influence rules of internal structural parameters on the structural performances of blade; and then, according to the topological conceptual design scheme and test results, the multi-objective optimization of new blade is carried out to study the influence rules of key design parameters on the aerodynamic and structural performances, thus to propose design methods and schemes of new blade which can comprehensively improve the aerodynamic and structural performances. The results can provide new theoretical basis and technological means for the blade design, thus to further improve the wind turbine efficiency, enhance the equipment reliability and reduce the levelized cost, and bring tremendous economic and social benefits.
能源危机与环境污染是当今人类生存和发展面临的两大难题,大力发展风电是解决上述难题的重要手段之一。当前我国风电度电成本依然偏高,在较大程度上阻碍了其健康发展。风力机最核心部件——叶片“降本增效”新技术的研究与应用是解决上述问题的有效途径。本项目拟通过叶片气动外形与内部结构拓扑协同优化研究,揭示气动外形、载荷传递途径以及内部拓扑构型的耦合作用机理,提出新型翼型以及整体叶片概念设计方法与方案;进行翼型低速风洞试验与叶片缩尺模型静态试验,探究载荷之间的对应转化关系以及内部结构参数对结构性能的影响规律;进而依据概念设计方案结合试验结果,开展新型叶片多目标最优体型研究,明确关键设计参数对新型叶片气动与结构性能的影响规律,提出综合改善气动与结构性能的新型叶片最优体型设计方法与方案。研究成果可为叶片设计提供新的理论依据与技术手段,进一步提升我国风电设备设计水平和设计能力,并产生巨大的经济效益及社会效益。
大力发展风力发电是实现我国清洁能源战略的必然选择,但当前风电与其他发电方式的竞争态势依然严峻,对其进行“降本增效”仍是研究的热点与难点。新型风力机叶片最优体型设计方法的研究与应用是解决上述问题的一个有效途径。本项目以某1.5MW风力机叶片为研究对象,通过构建多种优化模型,开展叶片气动外形与内部结构协同优化最优体型研究。首先,建立了气动外形与内部结构拓扑协同优化方法,在概念设计阶段从翼型以及整体叶片两个层面揭示了多个因素影响下气动外形、载荷传递途径以及内部拓扑构型的耦合作用机理,提出了更为合理有效的新型翼型及叶片概念设计方案;随后,研究了概念设计方案的实际应用效果,并依据概念设计方案建立了新型叶片内部结构最优体型设计方法以及新型叶片气动外形与内部结构协同优化最优体型设计方法,明确了多个关键设计参数对新型叶片气动与结构性能的影响规律,提出了新型叶片最优体型设计方案,进一步提高了风力机效率、提升了设备可靠性并降低了风电度电成本。研究成果可为风力机叶片设计提供新的理论依据与技术手段,提升风电设备设计水平和设计能力,对构建清洁低碳、安全高效的能源体系,实现“碳达峰、碳中和”目标具有重要的科学意义和工程应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
滚动直线导轨副静刚度试验装置设计
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
一种改进的多目标正余弦优化算法
基于表面曲率光滑连续性的风力机叶片气动外形与结构拓扑设计理论
风力机叶片气弹剪裁与预弯外形设计的协同优化方法研究
基于伴随方法和转捩模型耦合的叶轮机械叶片气动外形优化研究
风力机叶片宏观拓扑与细观纤维铺角优化设计研究