The high-speed permanent magnet synchronous machine (HSPMSM), which has the merits of the capacity of directly connecting with the high speed prime mover or load, improving the system reliability and efficiency, has become a hot topic in electrical engineering. But some key issues, such as large rotor loss and high temperature, are still not resolved effectively, which restrict the development of HSPMSM to a larger power, higher speed and higher power density. Combining the advantages of the ferrite permanent magnet which has remanence and very lower conductivity and rare earth permanent magnet which has high remanence, a novel permanent magnet compound excitation HSPMSM with lower rotor loss is creatively proposed. In this project, the coupling modeling of nonlinear magnetic-thermal-mechanical based on network theory and finite element method are involved as the main approach. The interior electromagnetics, the characteristics of loss and temperature, the multi-physics domain optimization are analyzed in depth. The demagnetization mechanical of two different characteristics magnets which work simultaneously in the same magnetic circuit and the rotor loss restricting mechanism are revealed. The two key problems of anti-demagnetization and composite metric of this two different magnets are solved. And the based theory system of the permanent magnet compound excitation HSPMSM is established primarily. The achievements of this project not only have important engineering and theory significance, but also improve and perfect the theoretical system of permanent magnet machines, which leads to a very important scientific significance.
高速永磁同步电机(HSPMSM)可直接与高速原动机或负载连接,提高系统效率和可靠性,已成为电工领域的研究热点。但转子涡流损耗大、发热严重等一系列关键问题仍没得到有效解决,严重制约着HSPMSM向更大功率、更高转速、更高密度发展。申请人结合铁氧体永磁体有剩磁但导电性差和稀土永磁体剩磁高的优点,创造性地提出一种低转子涡流损耗复合励磁HSPMSM。项目以基于网络理论的非线性磁—热—机耦合建模和有限元法为主要手段,全面深入地对该种电机的内部电磁场、损耗及温升特性、多物理域耦合优化设计等问题展开研究,揭示新型HSPMSM中两种不同特性永磁体同时工作时的退磁机理及转子涡流损耗抑制机理,解决两种永磁材料防失磁和复合度优化的关键问题,初步建立永磁复合励磁HSPMSM的基本理论体系。项目研究成果不仅对HSPMSM具有重要的理论和工程意义,而且所解决的科学问题对丰富和完善永磁电机理论体系亦具有重要的科学意义。
高速永磁同步电机(HSPMSM)可直接与高速原动机或负载连接,提高系统效率和可靠性,已成为电工领域的研究热点。项目提出一种低电导率的铁氧体永磁体与高性能稀土永磁体复合励磁的低涡流损耗HSPMSM转子结构,并对该种电机的电磁、热、转子强度、动力学四个方面展开了研究,建立了两种不同磁性能永磁体同时工作在同一磁路下的磁路计算法方法、获取了复合励磁结构的转子涡流损耗特性变化规律,提出了复合度的选取选择和方法,揭示了转子永磁体工作点的分布和变化规律;建立了基于网络理论的高速永磁电机磁—热—强度—动力学分析方法,编制了相应的计算程序,揭示了高速永磁电机多物理域之间的耦合作用关系,初步建立了复合励磁以及常规HSPMSM的多物理域耦合设计理论和方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
基于自适应干扰估测器的协作机器人关节速度波动抑制方法
不同内填材料生态复合墙体肋格单元试验研究
无机粒子填充硅橡胶基介电弹性体的研究进展
石墨烯基TiO2 复合材料的表征及其可见光催化活性研究
齿谐波辅助励磁的混合励磁永磁同步发电机系统研究
采用无刷无励磁机谐波励磁的混合励磁永磁电机的研究
舰船用高功率密度定子励磁型混合励磁永磁发电机研究
交替极切向励磁游标永磁电机研究