Superconducting electromagnetic smart structure based on flux-pinned effect provides a kind of low risk working method for on-orbit autonomous docking and assembly. Considering current problems such as small interface force stiffness and poor stability presenting in the superconducting smart structure, the proposal intends to carry out experimental and numerical work to enhance trapped flux for a type of superconducting tape stack conductor structure (referred to as stack structure) by using the pulsed field magnetization method and then improve dynamic force characteristics of the stack structure. The investigations are finished to show the effect of superconducting tape characteristics, stack conductor structure forms and pulsed field magnetization parameters on the trapped field characteristics of the stack structure, and provide the influence rules of trapped field characteristics and motion properties on dynamic force characteristics of the stack structure. The simulation of the pulsed field magnetization of the stack structure and dynamic force computation is a typical multi-physics coupling and multi-scale computational problem. The reasonable superconducting electromagnetic E-J model, electric-thermal coupling model and electromagnetic stress model are firstly determined, and then depending on the finite element method and using H or T - A efficient computational formulation, the numerical simulation method is built to predict the pulsed field magnetization and dynamic force characteristics of the stack structure. This proposal will make clear the coupling mechanism and rules of multi-physics fields such as electrical, magnetic, thermal, mechanical fields in the pulsed field magnetization process of the stack structure, and then conclude the dynamic force properties of the stack structure and the relative influence laws from different parameters. The fundamental research will provide theoretical and scientific support for the design of the stack structure under the pulsed field magnetization to show good dynamic force characteristics.
基于磁通钉扎效应的超导电磁智能结构为在轨自主对接提供了一种低风险的工作方式。鉴于目前该结构存在对接力刚度小和稳定性较差的问题,本项目拟开展采用脉冲磁化方法增强超导带叠层导体结构(简称stack结构)俘获磁通及提高其动力学特性的研究工作。明确超导带参数、叠层导体结构形式和脉冲磁化参数等因素影响stack结构俘获场特性的规律,以及俘获场特性和运动模式等因素影响stack结构动力学特性的规律。针对脉冲磁化和动力学特性仿真计算是典型的多场耦合和多尺度计算问题,确定合理的超导电磁本征模型、电热耦合模型和电磁应力模型,基于有限元法和采用高效的H或T-A计算格式,建立满足stack结构脉冲磁化和动力学预示的数值模拟方法。项目研究将明确脉冲磁化stack结构的电、磁、力、热等多场耦合作用机理与规律,得出其动力学特性及各参数影响规律,为设计具有良好动力学特性的脉冲磁化stack结构提供理论与科学依据。
针对空间在轨自主对接对电磁智能结构的需求,研究了脉冲磁化方法增强超导带叠层导体结构(Superconducting tape stack conductor)俘获磁通及提高其动力学特性的方法。探索了超导带叠层导体模型的6种等效简化计算方法,同时在有限元方法中有效耦合传热模型和力学模型,实现了脉冲磁化过程中超导带叠层导体的电-磁-热-力多物理场耦合仿真分析,超导带仿真计算层数达到1000层。基于该方法分析了不同脉冲磁化参数、制冷条件、超导带本构参数、超导带叠层结构等因素对俘获场性能的影响,经优化计算脉冲磁化俘获场值可达到2T@30K。.建立了超导叠层导体结构准静态和动态力学特性的有限元仿真分析和实验验证方法,分析了超导电磁对接结构的轴向对接力、面内力、动态刚度、悬浮漂移等电磁对接力特性。建立了结合冻结磁通镜像模型的空间六自由度对接动力学模型及计算分析方法,可进行不同相对距离、相对速度、磁化状态、阻尼特性的对接动力学特性计算分析。.建立了超导体结构的悬浮转动损耗测试方法,发明了针对微小推力测试的磁悬浮扭摆测量法、磁悬浮冲量累积测量法以及多个具有自主知识产权的支撑技术,建立了超导磁悬浮微小推力测量装置,研究了影响转动损耗的磁场分布、悬浮气隙、悬浮振动等主要因素,实现50kg承载能力以及毫牛乃至微牛级的电推进系统微小推力测量应用。.基于该国家自然科学面上基金项目已发表学术论文13篇,其中SCI收录论文12篇,授权国家发明专利6项和软件著作权2项,参与编写英文专著1部,相关研究成果支撑获评2020年度军队科技进步二等奖,培养毕业优秀硕士研究生5人。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于多模态信息特征融合的犯罪预测算法研究
基于细粒度词表示的命名实体识别研究
基于二维材料的自旋-轨道矩研究进展
预磁化超导磁通钉扎对接结构的动力学特性研究
原子层石墨/超导体/铁磁体混杂结构中的输运特性
高温超导体结构单元层的制备、剪裁和超导机理研究
叠层复合材料中的磁调控压电半导体特性