The detecting and treatment of chlorinated volatile organic compounds has become one of the key problems in the treatment of environmental pollution. In order to realize the real-time detection of target chlorine gas, based on the photonic band gap characteristics of photonic crystals and the principle of interferometric sensing, we propose an unlabeled photonic crystal chlorinated gas sensor. Metal organic frameworks (MOF) and graphene oxide (GO) composite materials (MOF@GO) and mesoporous TiO2 materials were selected as functional component units with different refractive index to construct and prepare the (MOF@GO/TiO2)n photonic crystal heterostructures with unique band gap photonic properties and high porosity for the first time. The relationship between the characteristic reflection peak and the structure parameters of the photonic crystal is established. The relationship between the molecular diffusion rate of chlorinated gas and the porosity, microstructure and photonic crystal structure of MOF@GO thin films is studied. The response mechanism of the photonic crystal and the qualitative and quantitative relationship between the chlorinated gas drive and the change of the photonic band gap are systematically investigated. The diffusion rate formula is used for theoretical simulation and calculation to optimize the experimental design. The relationship between the performance of the chlorine gas sensing and the structure of the photonic crystal is systematically investigated, so as to realize the dynamic and rapid detection of the high sensitivity of the sample parameters of the chlorinated gas. Therefore, a new label free photonic crystal gas sensor is developed.
氯代挥发性有机物的监测和治理已成为环境污染治理的重点问题之一。为了实现对目标氯代气体进行实时检测,基于光子晶体的光子禁带特性,并结合干涉型传感原理,提出构建无标记光子晶体氯代气体传感器。选用金属有机框架(MOF)与氧化石墨烯(GO)的复合材料(MOF@GO)和介孔TiO2材料作为具有不同折射率的功能性组份单元,率先构筑并研制具备独特的带隙光子特性和高孔隙率的(MOF@GO/TiO2)n一维光子晶体,建立其特征反射峰与光子晶体结构参数间的关系,研究氯代气体分子扩散速率与MOF@GO薄膜的孔隙率、微结构及光子晶体结构之间的关系;系统研究光子晶体的响应机制以及氯代气体驱动与光子带隙变化之间的定性及定量关系,利用扩散速率公式进行理论模拟和计算,优化实验设计;探究氯代气体传感性能与光子晶体结构之间的构效关系,实现对氯代气体样本参数高灵敏度的动态快速检测,由此发展新型无标记光子晶体气体传感器。
项目针对氯代气体传感检测,基于一维光子晶体的光子禁带特性,结合干涉型传感原理,理论构建了以金属有机框架材料MOF及其氧化石墨烯GO复合材料MOF@GO与介孔二氧化钛TiO2为功能性组份单元的异质结(MOF@GO/TiO2)n一维光子晶体气体传感器,建立了反射吸收峰与光子晶体结构参数之间的关系模型,模拟了入射角度对光子晶体反射吸收峰的影响,并对光子晶体的可视化进行了数值分析。针对几种典型氯代挥发性气体(四氯化碳CCl4、氯苯C6H5Cl和氯化氢HCl等)分子的尺寸、极性特征,分别研究了气体分子扩散速率与MOF薄膜的孔隙率、微结构及光子晶体结构间的关系,开展MOF及其与氧化石墨烯复合MOF@GO气敏材料的研制和气敏性能的研究。提出并研制了多种高效快速检测氯代气体的一维光子晶体传感器,同时设计并搭建了检测氯代气体传感性能的实验装置。率先通过无氢氟酸方法合成了MIL-101(Cr),研制了一种基于MIL-101(Cr)/TiO2一维光子晶体无标记高性能光学折射率CCl4气体传感器。提出了一种基于纳米多孔UIO-66-NH2/TiO2布拉格反射镜的一维光子晶体HCl气体传感器,实现了高灵敏、高选择性和重复性可靠的低浓度(<5ppm)HCl气体的实时检测。率先研发了由TiO2和UiO-66@GO旋涂自组装的一维光子晶体(UiO-66@GO/TiO2)n快速检测C6H5Cl气体传感器,其检测极限可以达到13ppm。为了进一步提高MOF基一维光子晶体传感器的性能,提出在MOF中掺杂第二金属的方式对传感材料进行扩展研究,选用ZIF-8(Zn@Co)作为气敏传感层,充分结合实验和理论优化设计模拟后,制备了四周期ZIF-8(Zn@Co)/TiO2一维光子晶体传感器,基于双金属的一维光子晶体传感器对C6H5Cl表现出更高的光学响应和更好的传感性能。通过系统研究一维光子晶体传感器的响应机制及其氯代气体传感性能与光子带隙变化间的定性与定量关系,阐明了MOF基一维光子晶体传感器氯代气体分子识别转化为光信号的机制。项目的研究不仅为新型光子晶体光学气体传感器的研制提供基础,而且将加速新型气敏材料的实际应用进展。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
氯盐环境下钢筋混凝土梁的黏结试验研究
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
光子晶体光纤温度传感器特性研究
无配体负载型钯催化的氯代芳烃偶联反应研究
空芯光子晶体光纤中射频放电激励气体激光的研究
纳米多孔硅光子晶体生物传感器的研究