Porous metal materials processing technology is one of the most active research direction in the field of additive manufacturing area, which in aviation, aerospace,medical and other fields have a very important application value. The optimization of the additive manufacturing process is the basis for the stable operation of the laser metal 3D printing system, which is very important for the improvement of the precision and quality of the porous structure. At present, the research on the topology design and processing parameters optimization of porous metal materials at home and abroad is in the initial stage, which is a mixed variable, multi-objective and dynamic complex optimization problem. The research and application of high efficiency intelligent optimization algorithm are very high. In this paper, we will study the optimization model of porous structure mechanical model and process parameters, and develop a new intelligent algorithm fusion model based on life cycle mechanism, which is efficient, adaptive and self-reconfigurable. By optimizing the metal material topology and real-time processing parameters, the laser 3D printing system in the high-precision preparation of personalized porous structure of the yield is improved. The innovation of the project is that the intelligent optimization algorithm is applied to the optimization problem of the additive manufacturing process firstly. The research achievement is an important application of artificial intelligence in the field of intelligent manufacturing. It will promote the further development and application of the technology of additive manufacturing in Department of orthopedics, which has important academic value and will have significant social and economic benefits.
多孔金属材料加工技术是增材制造领域最活跃的研究方向之一,在航空、航天和医疗等多种领域都有极其重要的应用价值。增材制造工艺优化是保障激光金属3D打印系统稳定运行的基础,对多孔结构加工精度和质量的提升至关重要。目前,国内外对多孔金属材料拓扑结构设计、加工工艺参数优化的研究处于起步阶段,其面对的是混合变量、多目标、动态复杂优化问题,对高效智能优化算法研究与应用要求极高。课题将深入研究多孔结构力学模型和工艺参数在线优化模型,开发性能高效、具有自适应、自重构机制的多算法生命周期融合技术,通过优化金属材料拓扑结构和实时加工工艺参数提高激光3D打印系统在高精度制备个性化多孔结构的成品率。课题的创新点体现在首次将智能优化算法应用于增材制造过程优化问题求解,其研究成果是人工智能在智能制造领域的重要应用基础性研究,将驱动增材制造技术在骨科临床领域的进一步推广和应用,具有重要学术价值并会产生重大的社会经济效益。
多孔金属材料加工技术是增材制造领域最活跃的研究方向之一,在航空、航天和医疗等多种领域都有极其重要的应用价值。增材制造工艺优化是保障激光金属3D打印系统稳定运行的基础,对多孔结构加工精度和质量的提升至关重要。目前,国内外对多孔金属材料拓扑结构设计、加工工艺参数优化的研究处于起步阶段,其面对的是混合变量、多目标、动态复杂优化问题,对高效智能优化算法研究与应用要求极高。课题将深入研究多孔结构力学模型和工艺参数在线优化模型,开发性能高效、具有自适应、自重构机制的多算法生命周期融合技术,通过优化金属材料拓扑结构和实时加工工艺参数提高激光3D打印系统在高精度制备个性化多孔结构的成品率。课题的创新点体现在首次将智能优化算法应用于增材制造过程优化问题求解,其研究成果是人工智能在智能制造领域的重要应用基础性研究,将驱动增材制造技术在骨科临床领域的进一步推广和应用,具有重要学术价值并会产生重大的社会经济效益。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
增材制造多孔钛表面氨基微环境的构建及诱导成骨的研究
大尺寸生物陶瓷人工骨增材制造研究
基于深度学习的大型金属构件增材制造装备动态监测与智能诊断理论与方法研究
复杂金属构件激光选区熔化增材制造过程稳态堆积机制研究